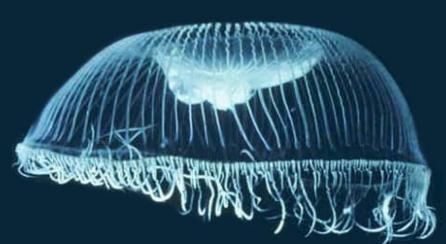
"Global" assessment of pelagic gelatinous zooplankton

photo: Larry Madin

Andrea Ottensmeyer, Ransom Myers Dalhousie University

Larry Madin, Richard Harbison Woods Hole Oceanographic Institution



Gelatinous plankton varied taxonomically:

Cnidaria: scyphozoan "jellyfish", cubomedusae holoplanktonic hydrozoans, siphonophores Ctenophora Chordata: salps, doliolids, appendicularians Mollusca: pteropods

high volume: tissue ratio translucent

varied trophic levels

Gelatinous plankton varied taxonomically: Cnidaria: scyphozoan "jellyfish", cubomedusae holoplanktonic hydrozoans, siphonophores Ctenophora Chordata: salps, doliolids, appendicularians Mollusca: pteropods delicate high volume: tissue ratio difficult to sample translucent few taxonomic experts varied trophic levels little interest until recently

Why study jellies?

Given climate change and overfishing in world ocean, might expect increased success of gelatinous creatures:

•increasing temperature and salinity: increased phytoplankton and zooplankton prey

•decreased competition for food given overfishing of commercial fish stocks

•tolerance for low 0_2 environments (coastal eutrophication)

Why study jellies?

Many regional coastal and shelf studies show increased incidence and peak abundance of blooms (population explosions) in recent years BUT:

basic biology and biogeography poorly known for most species
little known in pelagic
important part of pelagic ecosystems
can have important impact on fish stocks
no comprehensive, quantitative synthesis

Challenges

•Few taxonomic experts

•Only "recent" (~30 years) interest in recording/ quantifying jellies in plankton sampling

•Delicate structure makes traditional plankton sampling ineffective for many taxa

•Bloom/bust life cycle and benthic stage make sampling sufficiently very difficult, and trends hard to interpret

We would like to know:

•What are biogeographic and diversity patterns of pelagic gelatinous zooplankton globally?

•Have these patterns changed through time? How?

•Are the oceans being "jellied"? Why?

Are there sufficient data of good enough quality to answer these questions?!?

Blue water dives

Larry Madin and Richard Harbison (WHOI)

SCUBA dive in open ocean opportunistically

experts in gelatinous plankton

>30 years of data UNIQUE
very little published; explored!

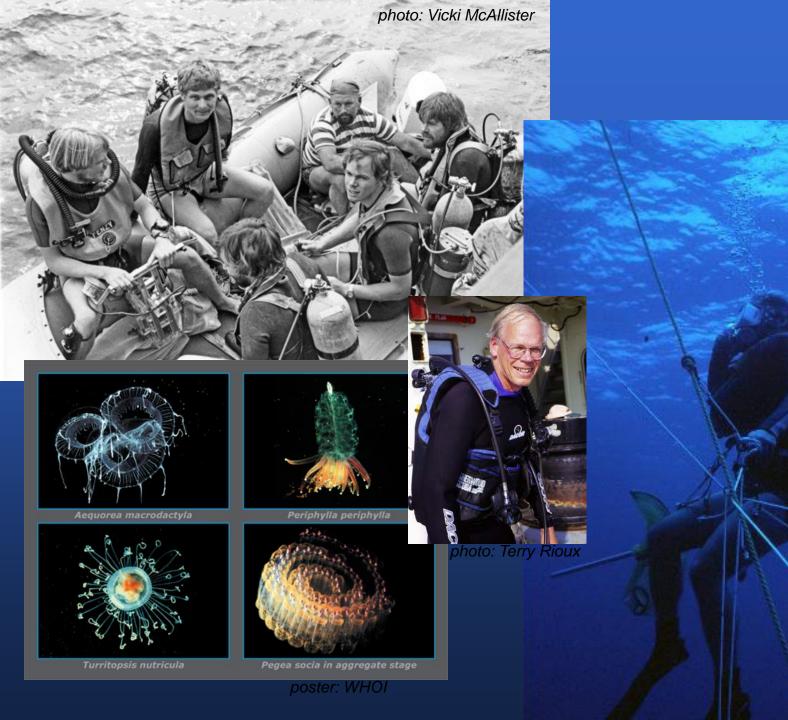


photo: WHOI

Dive logs

Dive Details

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Creatures Observed
COLLECTED SPECIMENS: X. O.S. Maxima (?) chain, with religits & religits (2000)	ENERAL OBSERVATIONS Said af cable - many at surface in clumps. Said of cable - boundary. So at death, solitories & dires most common. It surface, openial colonies + more chains (chains seasond at closed) along kish most common die. More apparent variation in species bype at surfacethen depor Sate too - Sate chain captured was only sate seen xat big (esthem rements seen x1 small cyclight charphore xDuly 1 9ph. Small seen in addition to one caught X3-4 plengods seen (hing) X1 charlownath seen very little trachedemicin - not hobiaable. X1 scypto medium - 1 A. long ind. Oral arms - 10 em. diamein brown polkades flathend but - prob. not pelogia. I polychate : That about it - Mosstly just rads.

Madin-Harbison dives

->>2000 dives over 35 years: 1971-2006

Largest dataset we know of with resolution to Genus/species, non-destructive sampling

Archive sources

We have identified a number of oceanographic cruises from 1899 and later with:

-capable jelly taxonomists

-vertical plankton sampling

-abundance and size (often) of jelly species found

-oceanographic sampling (temperature, salinity)

May be useful for seeing large ecosystem effects, insight into particular species

H.B. Bigelow 1912

Ernst Mayr Library of the Museum of Comparative Zoology, Harvard University

Strategy

 Biogeography of pelagic gelatinous species (blue water dives, archive sources):
 -species ranges, seasonality of patterns
 -community structure

•Latitudinal gradients in pelagic gelatinous biodiversity (blue water dives)

 Temporal trends in pelagic regions with sufficient data (e.g, slope waters, Atlantic Bight, USA)
 -model species categorical abundance (or presence/absence) against environmental, spatial and temporal variables

•Meta-analysis of regional studies: Is the ocean being "jellied"? (everything we can find with multi-decade data!)

Analytical tools

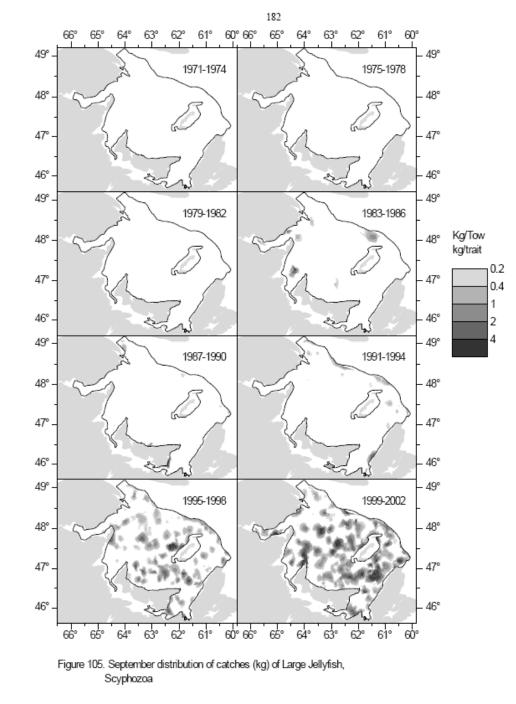
•mapping of species ranges in GIS

 calculation of biodiversity indices by site or grid cell comparison to latitudinal gradients, physical and environmental measures

depending on the nature of further datasets found, temporal analyses will range in complexity from:
-logistic regression (presence/absence data)
-mixed models using categorical abundance

-mixed models on actual abundance/biomass

•meta-analytic methods to look at global trends

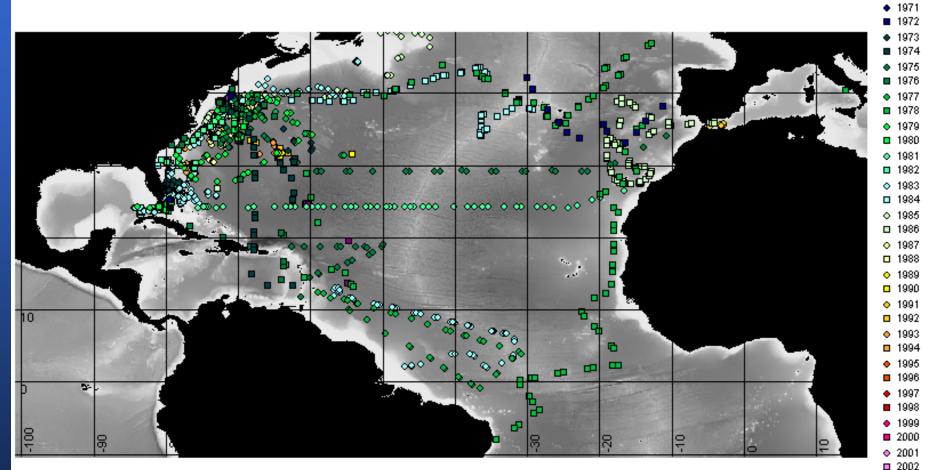

...still investigating the possibilities

Some sample datasets

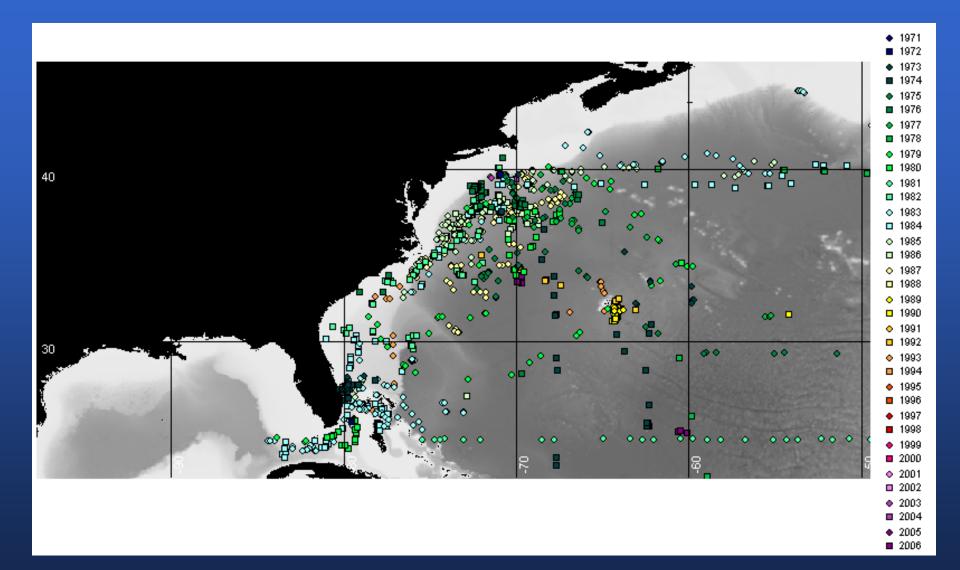
Method	Source	Region	Timespan	Resolution	Author			
Blue water SCUBA dives	Madin, Harbison (WHOI)	North Atlantic	1971-2006	Genus/species: categorical abundance	largely unpublished			
Bottom trawl surveys	DFO Canada	Gulf of St. Lawrence, Canada	1985-2002	Biomass: "large jellyfish"	Govt. report: Benoit et al. 2003			
Plankton tows (ichthyoplankton surveys)	DFO Canada	Scotian Shelf, Gulf of Maine	1977-1982; 1983-1985	Phylum/Class: categorical abundance	Jelly data unpublished			
Continuous Plankton Recorder	SAHFOS	High latitudes, North Atlantic	1946-2006	Presence/Absence of nematocysts	Wright, in prep.			
Bottom trawl surveys RACE division o AFSC		Eastern Bering Sea Shelf	1979- 1997+?	Biomass: "large jellyfish"	Brodeur et al. 1999			
Trawl surveys	SEAMAP	Northern Gulf of Mexico	1985-1997 (2002/3)?	Standardized biomass: for large jelly species	Graham 2001			
Trawl surveys	ICES	North Sea	1971-1986	Relative abundance: large jelly species	Lynam et al. 2005			
Plankton net sampling Villefranche Bay weekly sampling		Western Mediterranean	1966-1993	Relative abundance: hydromedusae	Buecher et al. 1997, Buecher 1999			

Some sample datasets

Method	Source	Region	Timespan	Resolution	Author	
Blue water SCUBA dives	Madin, Harbison (WHOI)	North Atlantic 1971-20		Genus/species: categorical abundance	largely unpublished	
Bottom trawl surveys	DFO Canada			Biomass: "large jellyfish"	Govt. report: Benoit et al. 2003	
Plankton tows (ichthyoplankton surveys)	DFO Canada	Scotian Shelf, Gulf of Maine	1977-1982; 1983-1985	Phylum/Class: categorical abundance	Jelly data unpublished	
Continuous Plankton SAHFOS Recorder		High latitudes, North Atlantic	1946-2006	Presence/Absence of nematocysts	Wright, in prep.	
Bottom trawl surveys	RACE division of AFSC	Eastern Bering Sea Shelf	1979- 1997+?	Biomass: "large jellyfish"	Brodeur et al. 1999	
Trawl surveys	SEAMAP	Northern Gulf of Mexico	1985-1997 (2002/3)?	Standardized biomass: for large jelly species	Graham 2001	
Trawl surveys	ICES	North Sea	1971-1986	Relative abundance: large jelly species	Lynam et al. 2005	
Plankton net sampling Villefranche Bay weekly sampling		Western Mediterranean	1966-1993	Relative abundance: hydromedusae	Buecher et al. 1997, Buecher 1999	



Southern Gulf of St. Lawrence, eastern Canada


Annual bottom trawl surveys, DFO Canada Bonoît at al. 2003

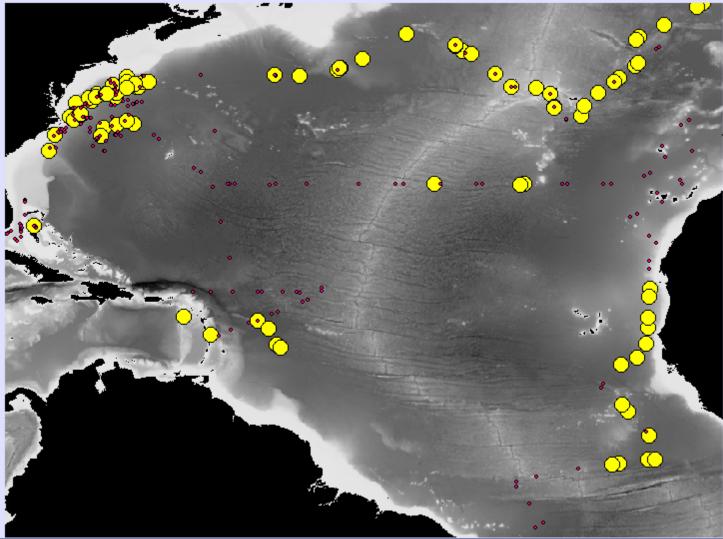
Benoît et al. 2003.

North Atlantic

- ◆ 2003
 2004
- 20052006

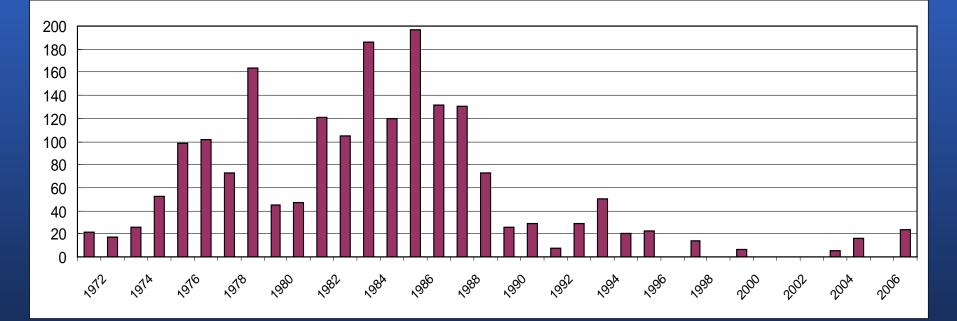
Pelagia sp. sightings

Presence


Absence

30 of 115 dives

(prepared with only 4 years of data)


8

Pelagia sp. sightings

Current dive counts

n=1957 blue water dives (with positions recorded)

~200 dives still to be entered in 1990's and 2000's

Dives by month

Year	1	2	3	4	5	6	7	8	9	10	11	12
2006		7	5	12								
2005												
2004										1	4	11
2003						5						
2002												
2001												
2000												i
1999						6						
1998												i
1997				6	8							
1996												
1995			4	4	2	2	6	4				
1994					5					7	8	
1993			11	2			22	3			1	11
1992						12					17	
1991				7								
1990			18	11								
1989								21			5	
1988				14	1		14	44				
1987			13	33	1		46	24	8	2	2	
1986					24	43	10	55				
1985		1	9	26	17		31	66	17	5	24	
1984				43				53	2	17	5	
1983		15	23		10	10	57	34		57		
1982	4	38	7		43	13		50	40	0	-	10
1981		11	1		14	8	0	52	12	2	5 9	16
1980 1979						19 20	8 22			11	9	3
1979		2	8			20 34	74	2		4	40	3
1978		Z	0 41			54	74 8	Z	17	4	40 2	4
1976	4	22	9	17		20	9	17	4		2	-
1975	2	20	J	.,	15	23	1	21	- 1		15	
1974	5				4	5	8	19	4	7	.0	
1973	J					1	Ĵ	3	10	1	9	2
1972	2	1	1				12	1			Ĵ	
1971								3	9	9		
			-	_	_						-	_

and year

🖉 Microsoft Access

<u>File Edit View Insert Format Records Tools Window Help</u>

M - □ ⊕ Q, ♥ X □ □ ≥ ≤

	III DiveData : Table														×	
	LatDec	LongDec	Loca	Divers	NDivers	SeaWea	Sunny	Night	Wind	WindMore	Visibility	VisMore	Drift	SurfTemp	Tem	
	25.413333	281.935	NA	LM* CC GD DC	4	Clear	NA	N	10	NA	100	+	1	26.5	NA	
	25.405	281.93	NA	GD* DC LM	3	Sunny	Υ	N	10	NA	-999	NA	-999	26.5	NA	
	25.4	281.92833	NA	DC* GD LM CC	4	Partly sunny	N	N	-999	NA	80	NA	1	26.5	NA	
	25.428333	281.94833	NA	LM DC* CC	3	Sunny; Calm	Υ	N	-999	NA	100	+	1	26	NA	
	25.413333	281.95833	NA	LM* DC CC GD	4	Sunny	Υ	N	-999	NA	60	NA	1.5	26	NA	
	25.37	282.06167	NA	LM CC* DC GD	4	Sunny	Υ	N	15	NA	100	+	2	26.5	NA	
	25.398333	281.96333	NA	DC* LM GD CC	4	Sunny	γ	N	-999	NA	70	NA	-999	26	~	
	25.216667	280.74	NA	LM CC GD* DC	4	Sunny; Calm	γ	N	-999	NA	100	+	0	28.2	27 at	
	25.405	280.68667	NA	CC* DC LM GD	4	NA	NA	N	-999	NA	100	+	1	27.2	NA	
	25.728333	280.58667	NA	LM* CC DC GD*	4	Calm	NA	N	-999	NA	100	+	1	27.7	NA	
	37.6	288.03333	NA	LM* KS DA JL	4	Sunny	Υ	N	20	NA	100	NA	2	-999	NA	
	37.6	287.56667	NA	GD* CC* DR KF PC	5	NA	NA	N	-999	NA	70	NA	2	28.9	NA	
	37.3	286.9	NA	LM GD	2	Calm	N	γ	10	NA	0	Night	0	26	NA	
	37.283333	286.88333	NA	CC DA JL PC*	4	NA	NA	N	-999	NA	100	NA	3	27	NA	
	37.35	287	NA	LM GD KS KF*	4	NA	NA	N	-999	NA	100	NA	1	28.9	NA	
	36.95	286.58333	NA	LM GD	2	Dark	N	γ	-999	NA	0	Night	2	28.4	NA	
	36.666667	286.18333	NA	PC* CC DA KS JL	5	NA	NA	N	20	R:20-30	70	NA	2	28	NA	
	36.733333	286.16667	NA	LM GD DA JL KF*	5	Showers	N	N	20	NA	100	+	3	28	NA	
	36.016667	285.5	NĄ	DR* CC LM JL DA	5	NA	NA	N	-9.9	NA	70	NA	-999	29	NA .	٦I
Record: 1 < 1 > > > > 544																

🛛 🕑 Wi... 🧖 RGui 🔯 Gl... 📾 Scr... 😋 Gl... 📴 Mi... 🖄 Ad... 🛅 Blu... 🕅 Di...

Dive Details

_ 8 ×

NUM

S 🗐 🛇 📢 🖕 🔍 🎇 🎧 🤣 🌾 7:30 PM

Datasheet View

🏽 🔀 Start 🔢 🚮 🥭 🎲 📀 📁 🎭

Microsoft Access

🚮 Start

🗹 🥭

File Edit View Insert Format Records Tools Window Help

🔟 • 🖬 🖨 🖪 🖤 🖇 🖻 🖻 🚿 🗠 🤮 🛃 🏹 🏹 🋅 🖓 🗰 🕨 🕷 🕨 •

📾 BlueWaterDivesJan15 : Database - 🗆 🗵 I Species Table : Table _ 🗆 🗙 AbunColl AbunObsCo ID BWPNo Month Day Year OrgOrig OrgCode OrgGenus OrgSpecies SalpForm Location Abur • 25 CPL 1 1314 3 1985 Cyclosalpa polae Cyclosalpa NA polae coll NA 2 1314 3 1985 Cyanea CYN NA 251 Cyanea obs NA 1 few sp 3 1314 3 1985 Pelagia PEL Pelagia NA NA 25| obs ma sp ma 1985 AEQ 4 1314 3 25 AEQ NA NA sin Aeguorea sp obs sin • 5 1315 3 1985 Corolla sp 26 COR Corolla NA 1 NA coll sp few 6 1315 3 EVX Eurhamphaea sp 26 1985 EVX NA NA obs sin sin 1985 Forskalias 3 26 FOR Forskalia NA NA 7 1315 sp obs pl pl 8 1315 3 1985 Agalma AGS Agalma NA obs NA 261 sp sin sin 9 1316 3 SLC 261 1985 SLC Salpa cylindrica 5 sol both pL ٦a 3 1985 EVX Eurhamphaea sp 1 10 1316 261 EVX NA coll NA few 3 1985 Diphyids DIP Diphyid NA NA 11 1316 261 sp obs pl pl 12 1316 3 26 1985 Forskalia FOR Forskalia NA obs NA few few sp 13 1316 3 26 1985 Corolla COR Corolla NA NA 2 obs sp few 3 1985 SLC Salpa 14 1317 27 SLC cylindrica both pl sol; agg pl 3 15 1317 27 1985 CAF CAF Cyclosalpa affinis coll NA agg 1985 CPL 3 CPL Cyclosalpa 16 1317 27 polae sol; agg; who both pl pl 17 1317 3 27 1985 EVX EVX Eurhamphaea sp 1 2-4 NA both few 18 1317 3 27 1985 Forskalias FOR Forskalia NA NA obs pl pl sp 3 1985 Diphyids 19 1317 27 DIP Diphyid NA рI sp obs pl 3 20 1317 27 1985 Pegea PSP Pegea wh obs NA sin sp sin 1.1. I. I. 101 ... Þ ▶ ▶ ▶ ▶* of 2023 • Record: II I 5

Creatures Present

🖸 Micr... 🖄 Ado... 🛅 Blue... 📰 Sp...

_ 8 ×

NUM.

7:24 PM

Latin binomal species name of the organism. "sp" = Organism was onyl identified to the genus level

🕑 Win...

RGui

🚺 🔍 GIS...

🛛 📴 Scr...

🔄 GIS...

🖄 🕑 📜 🗞