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Abstract 

Predator control of lower trophic levels, or “top-down control” has been recognized as an 

important structuring force in terrestrial, freshwater and coastal marine food webs. 

Because offshore marine webs can typically not be studied using experimental 

techniques, there is only weak and isolated evidence that top-down control is important in 

the open ocean. Consequently, many marine scientists believe that environmental 

fluctuations that regulate productivity (“bottom-up control”) represent the predominant 

structuring force in the open ocean.  

Here we present a meta-analytic approach to analyze species interactions across 

the North Atlantic Ocean. We assembled all available biomass time series for a well-

documented predator-prey couple, cod (Gadus morhua) and Northern shrimp (Pandalus 

borealis) to test whether the temporal dynamics of these populations are consistent with 

the “top-down” or “bottom-up” hypothesis. Eight out of nine regions showed inverse 

correlations of cod and shrimp biomass, supporting the top-down view. Inverse 

correlations were weak or absent only close to the southern range limit of both species. 

Meta-analysis of shrimp versus cod and shrimp versus temperature series showed that 

increased cod abundance (weighted mean effect size: r=-0.5) and warm ocean 

temperatures (r=-0.29) both limit shrimp biomass in the North Atlantic Ocean, but that 

cod had stronger effects overall. The effects of cod predation decreased with increasing 

mean ocean temperature, suggesting that these effects are not independent. 

Based on these results we propose that reductions in predator populations, such as 

in the case of overfished cod stocks can have strong indirect effects on prey populations 



in oceanic food webs. In order to further investigate this hypothesis, we establish a 

methodological framework to analyse species interactions from time series data. 

 

Key words: climate, bottom-up versus top-down control, ecosystem effects of fishing, 

meta-analysis, predation 

 

Introduction 

Aquatic food webs have been studied intensively with respect to the interaction of 

resource (“bottom-up”) and consumer (“top-down”) effects on species composition and 

abundance. Experimental work in lakes, streams and coastal marine systems in particular 

showed that variations in predator populations often have cascading effects across the 

food web, with implications for community structure and ecosystem functioning 

(Carpenter and Kitchell 1985, Mazumder et al. 1990, Power 1990, Brett and Goldman 

1997, Estes et al. 1998, Worm et al. 2000, Jackson et al. 2001). Unfortunately, it is not 

clear how the concepts that emerged from these studies can be applied to the continental 

shelves and the open ocean, which cover more than two-thirds of earth’s surface. It has 

been argued that the diversity of species, and stochasticity of environmental controls in 

the open ocean may counter strong top-down effects (Strong 1992, Jennings and Kaiser 

1998). Others argue that there is convincing evidence that predation can structure open 

marine as well as inshore webs (Verity and Smetacek 1996, Pace et al. 1998). This 

question is not only of academic interests, since oceanic food webs support most of the 

world’s fisheries. So far, simulation models have been used as the main tool to study the 

ecosystem effects of fishing in the world’s oceans. These have revealed that predictions 



are very sensitive to the assumed balance of consumer and resource control (Walters et 

al. 1997, Cury et al. 2000, Bundy 2001). Consumer-controlled webs react strongly to 

fishing, as prey populations react rapidly to the removal of predators. Resource-

controlled webs in contrast are relatively insensitive to overfishing of higher trophic 

levels (Walters et al. 1997). Clearly, there is a lack of empirical studies that tests these 

ideas and evaluates the role of species interactions in oceanic food webs. One major 

reason for this lack is that these systems typically cannot be studied using powerful 

experimental techniques such as whole lake manipulations, caging or mesocosm studies 

in lakes, streams or coastal marine systems.  

Our approach here is to estimate the effects of species interactions using meta-

analysis of time series data. The rationale is that a prevailing bottom-up regime should 

result in a positive correlation between predator and prey abundance, because both 

ultimately depend on factors that regulate productivity. In contrast, strong top-down 

effects should result in a consistent negative correlation among predator and prey 

populations (McQueen et al. 1989). A weak interaction should result in no correlation at 

all. In addition, strong environmental controls should result in significant correlations 

between population abundance and ocean temperature.  

As an example, we use time series of cod (Gadus morhua), which has historically 

been a very abundant predator on forage fishes and benthic invertebrates in the North 

Atlantic. In the last two to three decades, cod abundance in the North Atlantic has shown 

strong fluctuations and rapid declines, as a result of overfishing (Myers et al. 1996, 

1997). Today, many stocks are at historically low levels. We suggest that each cod stock 

may be viewed as the replicated realization of a large-scale, albeit unintended, predator 



removal experiment. If analyzed properly, this can teach us something about how large 

marine ecosystems work. Observations indicate that while cod stocks declined, benthic 

crustaceans such as Northern shrimp (Pandalus borealis), crabs (Chionocetes opilio) and 

lobster (Homarus americanus) have increased in catches and abundance (see results). 

Analyses of single stocks have yielded inconsistent results on the causes of the increase 

in benthic prey species. Typically the increase was attributed to changes in ocean 

temperature, release from cod predation or both (Magnússon & Pálsson 1991, Berenboim 

et al. 2000, Koeller 2000, Lilly et al. 2000). In this paper, we focus on the interaction 

between cod and Northern shrimp, because both species occur on both sides of Atlantic, 

the amount and quality of available data is much better than for crab, lobster or pelagic 

prey species. Also, there is good direct evidence from stomach content analysis that 

shrimp is an important prey species of cod (Lilly 1991, Lilly and Parsons 1991, 

Magnússon & Pálsson 1991, Berenboim et al. 2000, Torres et al. 2000). Here, we use 

biomass time series of the two species as compiled by stock assessment scientists and 

temperature time series as compiled by physical oceanographers to estimate the 

interaction between shrimp, cod, and temperature. We use meta-analysis to determine if 

any reliable generalizations can be drawn from the available data. 

There are several difficulties in carrying out a meta-analysis of population 

interactions from observational time-series data. First, the assumption of independence 

among data sets may be compromised by spatial correlation. For example, in marine fish, 

the recruitment between populations is correlated on a scale of approximately 500 

kilometers (Myers et al. 1997). A related problem is the temporal autocorrelation within 

time series, which effectively reduce the true degrees of freedom that are available to test 



hypotheses (Bence 1995, Pyper and Peterman 1998). This problem is commonly ignored, 

because most time series are short, and loss of degrees of freedom strongly reduces the 

power of the significance test (Pyper and Peterman 1998). We deal with this problem, by 

adjusting the degrees of freedom, and then combining time series from many datasets 

using random-effects meta-analysis, which increases the power of our analysis. Finally, 

measurement error is well known to attenuate correlation coefficients. Quantifying 

measurement error and adjusting correlation coefficients, also increases the power of the 

test. In this study we attempt to combine these techniques with two purposes in mind (1) 

To evaluate the generality of strong predator versus environmental controls of shrimp 

populations in the North Atlantic, (2) To develop a powerful, methodological framework 

which allows to analyze the strength of species interactions from time-series data. 

 

 

Methods 

Species 

Northern shrimp (Pandalus borealis) is a medium-sized benthic decapod (carapace length 

up to 30 mm), which is most abundant in deeper (200 - 500 m), muddy habitats on the 

continental shelves in the North Atlantic and Pacific Oceans. This distribution is believed 

to be linked to a preference for cooler temperatures (1-6 oC) and soft, muddy sediments 

which contain large amounts of organic material on which the animals feed (Shumway et 

al. 1985, Ramseier et al. 2000). Maximum age is approximately 8 yr. Cod (Gadus 

morhua) is a large (up to 130 cm) and formerly very abundant demersal fish which 

occurs throughout the North Atlantic Ocean at depths ranging from 1 - 600 m. Maximum 



age is in excess of 20 yr, although young fish (ages 2-5) constitute the bulk of the 

biomass in most stocks today. Cod feeds mostly on benthic crustaceans such as shrimp 

and crabs and smaller fish like herring or capelin. Crustaceans comprise between 30 – 

90% of stomach contents in small cod (<20 cm), but usually <40% in large cod (>60 cm), 

which feed mainly on small forage fishes like capelin (Pálsson 1994). The ranges of 

Northern shrimp and cod are largely overlapping and Northern shrimp is an important 

diet component for cod in most regions (Table 1). 

 

Data sources 

As an initial step we used the existing NAFO (Northwest Atlantic Fisheries Organization, 

Dartmouth, Nova Scotia, Canada) database to look for patterns in the catches of cod and 

some benthic prey species, Northern shrimp, snow crab, and American Lobster. Then we 

collected all available time series of cod and Northern shrimp biomass from those areas 

in the Atlantic Ocean with substantial populations of both species (Fig. 1, Table 1). We 

had to exclude those time series where observations covered less than 10 years, because 

after treatment for autocorrelation the true sample size in those series was reduced below 

n=3 (see below). Whenever possible, we used research trawl survey estimates of biomass, 

which represent the highest quality information available. All research trawl surveys were 

designed incorporating a random stratified sampling strategy, although for some surveys 

(e.g., English Groundfish Survey), the stations were not re-randomized each year. For all 

data sets we collected estimates of uncertainty (when available) and details of the survey 

used. This information, along with the original data is available at 

<www.fish.dal.ca/codshrimp.html>. Where multiple research surveys had been 



conducted within one region, we averaged across these data sets. Long-term research 

trawl survey data were not available for five of the northern shrimp populations, because 

existing research surveys were not originally designed to monitor shrimp abundance. In 

these cases we used a combination of biomass estimates from short-term trawl surveys 

and published commercial catch per unit effort (CPUE) estimates, but only if those were 

standardized to correct for changes in gear technology and vessel characteristics. 

Standardized CPUE estimates were scaled up to biomass using the point estimates 

produced by the trawl surveys. 

 

Measurement error and autocorrelation 

It is well known that measurement error will bias our individual estimates of the 

correlations towards zero. Suppose that instead of measuring the variables U and V, we 

measure 

 

Equ 1   X=U+η,  Y=V+ζ 

 

Where η  and ζ  are measurement errors. If errors are normally distributed and 

independent of U and V, the relationship between the correlations ρ(U,V) and ρ(X,Y) can 

be calculated (Hedges and Olkin 1985, p.228). If estimates of the measurement error 

variance (σ2
η, σ2 ζ) can be obtained it is possible to correct for this bias using 

 

Equ 2  )/()/(/),(ˆ 222222
ζη σσσσσσρ +⋅+= vvuuxyrVU  

 



We used published estimates of the estimation error variance (σ2
η, σ2 ζ) for research trawl 

surveys in the North Atlantic (Myers XXX) and for CPUE time series (Harley and Myers 

2001). We took a conservative approach by assuming error variances ranging at the lower 

end of reported values (σ2
error = 0.1 and 0.03 for cod and shrimp, respectively). 

A second well-known problem in time series analysis is strong autocorrelation in 

many data sets, especially those dominated by low-frequency variability (Bence 1995, 

Pyper and Peterman 1998). This problem is similar to spatial pseudoreplication because it 

violates the assumption of independence among observations, which is required for most 

classical inference tests (Hurlbert 1984). In general, this means that a sample correlation 

between two autocorrelated time series has fewer degrees of freedom than assumed by 

the significance test. If the problem is ignored, as commonly seen in ecological papers, 

the test will have a Type I error rate greater than the specified α, and a significant 

correlation may be detected when in fact none is present. Recently, a robust method has 

been suggested to adjust the degrees of freedom for the sample correlation (“modified 

Chelton method”, Pyper and Peterman 1998), which has the advantage conserving both 

Type I and Type II error rates. This advantage is not shared by some alternative methods, 

which remove autocorrelation from the data (e.g. “first-differencing”, “prewhitening”), 

but tend to inflate Type II error rates and thus decrease the power of the hypothesis test 

(Pyper and Peterman 1998). 

 We tested for autocorrelation by correlating log-transformed population 

abundance in each year with abundance in years n+1, …, n+5 (lag-1 to lag-5). This 

revealed moderate to high autocorrelation in both cod and shrimp time series ranging 



from 0.5 to 0.96 at lag-1. We adjusted degrees of freedom accordingly using the 

“modified Chelton” method proposed by Pyper and Peterman (1998). 

 

Data analysis 

Shrimp and cod times series were log-transformed and correlated using Pearson’s 

correlation coefficient. Let di be the magnitude parameter, i.e. the “effect size”, for the 

meta-analysis (Hedges and Olkin 1985, Cooper and Hedges 1994). The effect size in our 

case will be the variance stabilizing z transform of the correlation coefficient ri. That is, 

our estimate of di is 

 

Equ 3 _ )]1/()1[ln(5.0 iii rrd −+⋅=  

 

If the underlying data are bivariate normal, the conditional variance of di is 

 

Equ 4  )3/(1 −= ii nv  

 

where ni is the effective sample size of the ith correlation. Note that this variance depends 

only on within-study sample size, not on the correlation parameter itself, which is a 

desirable property. 

Now let d be the vector of estimates of effect size for each of the populations. The 

errors in the estimate are assumed to approximately follow a multivariate normal 

distribution with mean 0 and variance-covariance Σ. To test heterogeneity of the effect 

sizes, i.e. all di are equal we use the test statistic 

 



Equ5 

 

(Hedges and Olkin 1985, page 211) where M is the matrix 

 

Equ  6 

 

_ where e is a p-dimensional column vector of ones and M^ is the estimate of M. If the p 

populations have the same coefficient, then the test statistic Q has an asymptotic chi-

squared distribution with p-1 degrees of freedom (Hedges and Olkin 1985, page 211). If 

the values of Q are small or statistically non-significant, the estimates of the components 

of d may be pooled. 

 

Random effects meta-analysis 

Under a random effects model the effects size di is not assumed to be fixed, but is itself a 

random variable. This relaxes the assumption of homogenous effects sizes. When 

comparing studies that were conducted in different ecosystems, this is likely more 

realistic than assuming that the underlying true effect size is precisely equal across all 

regions. Under a random effects model the total observed variability in the effect size 

estimate di, contains the conditional variation vi around each di, and random variation, 

σ2
δ , of the individual di around the mean population effect size. The unconditional 

variance used in the analysis is 

 

Equ 7  ii vv += 2*
δσ  



 

_ We can use the Q estimated above, as an estimate of the weighted sample 

estimate of the unconditional variance (Cooper and Hedges 1994, p. 275). 

 

Spatial correlation 

A final problem in combining data from various regions is that some regions may be 

spatially correlated, and therefore not completely independent. This is equivalent to an 

experimental situation where plots are so close to one another that they influence each 

other. For many fish including cod, it has been shown that recruitment between stocks is 

correlated on a scale of <500 km (Myers et al. 1997). This suggests that data sets in 

regions which are <500km away may not be entirely independent. Unfortunately, to date 

there is no established methodology that solves this common problem in meta-analysis, 

for example by adjusting the weightings given to particular studies. Therefore, we had to 

use a less powerful approach: we report both the results of the complete analysis, and 

those from an analysis where those regions which were <500km from neighboring ones 

were excluded from the analysis. 

 

Testing alternative hypotheses 

Using the same framework as outlined above, we analyzed correlations among cod 

biomass and bottom temperature and shrimp biomass and temperature respectively. The 

rationale was that cod recruitment is thought to decrease at lower temperatures (XXX), 

but shrimp recruitment may be sensitive to high temperatures (Shumway et al. 1985). 

Increases in temperature could send cod and shrimp on opposite trajectories, which could 

be falsely interpreted as an indication of top-down effects. To test this hypothesis we 



assembled long-term ocean temperature series for the depth regions that shrimp and cod 

distributions overlap (ca. 100 – 300 m). Data were retrieved from published 

oceanographic time series or oceanographic databases. In cases were only raw data were 

available we recalculated mean annual temperatures for 200 m depth using generalized 

linear modeling (RAM, DO WE HAVE A REF FOR THIS?). 

Then we correlated temperature series with the log-transform of cod and shrimp 

biomass respectively, at a time lag of 3 years. Changes in temperature are thought to 

affect larval processes and recruitment in particular (Myers 1998). Under this assumption 

changes in adult abundance would lag several years behind temperature series. We chose 

a lag of three years because at this age, both cod and shrimp mature in most regions. 

We were interested to test whether there are any consistent trends in the 

relationship between shrimp and cod and shrimp and temperature with increasing mean 

temperature in the study regions. We hypothesized that temperature effects may become 

stronger and species interactions weaker at extreme temperatures (northern or southern 

range limits, Myers 1998). To test this we correlated mean temperature as averaged from 

the temperature time series in the various study regions with the correlation coefficients 

ri of the cod-shrimp and the shrimp-temperature analyses. Mean temperature was log-

transformed for the analysis. 

 

 

Results 

Across all NAFO regions combined catches of cod showed strong inverse trends to 

catches of benthic prey species such as shrimp, snow crab and lobster over the last 40 



years (Fig. 2). Biomass time series of 9 cod populations in the North Atlantic show order 

of magnitude declines of cod in the Northwest Atlantic, and fluctuating but overall more 

stable populations in the NE Atlantic (Fig. 3). Shrimp populations in the same areas were 

also fluctuating, but generally increasing over most of the time series (Fig. 3). 

Correlations between cod and shrimp biomass time series revealed strong negative 

relationships in all populations with the exception of Gulf of Maine (weak negative) and 

Skagerrak (strong positive) (Fig 3). These two exceptions represent also the southernmost 

populations of Northern shrimp in the West and East Atlantic respectively (Fig. 1, Table 

2).  

When we corrected for measurement error and autocorrelation in the data, 

correlation coefficients increased, but effective sample size decreased dramatically in all 

data sets (Table 3). Due to very low effective sample sizes, only one (Barents Sea data 

set) remained significant on its own (Table 3). When data sets were combined in a 

random-effects meta-analysis, the weighted mean correlation coefficient for the cod –

shrimp correlation indicated a strong negative relationship (rweighted= -0.50) which was 

significantly different from zero (Fig. 5a, Table 4). Meta-analysis of cod versus ocean 

temperature revealed a weak positive correlation (rweighted= 0.21), which was not 

significantly different from zero (Fig. 5b, Table 4). In contrast, the shrimp versus 

temperature correlation was negative (rweighted= -0.29) and significantly different from 

zero (Fig. 5c, Table 4). These results were corroborated in a subsequent analysis where 

the Northern Newfoundland and Northern Gulf of St. Lawrence data sets were excluded 

to avoid potential problems of spatial correlation (Table 5). 



When we correlated shrimp-cod and shrimp-temperature correlation coefficients 

for each area with the mean temperature in the study region we found a non-significant 

trend for the shrimp-cod correlation (r=0.59, P=0.094, Fig. 6a) and no trend for the 

shrimp-temperature correlation (r=-0.08, P=0.833, Fig. 6b). If the analysis is restricted to 

those data sets that show a negative correlation between cod and shrimp (excluding the 

Skagerrak), the correlation between mean temperature and the shrimp-cod correlation is 

significant (r=0.77, P=0.025) 

 

 

Discussion 

Our meta-analysis suggests co-limitation of shrimp populations by predator abundance 

and ocean temperature. The mean effect size of cod abundance was substantially higher 

than the effects size for temperature. Thus may suggest that predator effects on biomass 

are stronger than temperature controls. This is probably the case because predation 

directly affects shrimp biomass whereas temperature affects recruitment (Richards et al. 

1996, Myers 1998), and hence only indirectly biomass. This evidence adds generality to 

the notion that predators can suppress lower trophic levels in oceanic food webs, as they 

do in lakes, streams, and coastal waters (McQueen et al. 1989, Power 1990, Paine 1994).  

Strong predation effects of Atlantic cod on invertebrates and forage fishes have 

been described before (Pálsson 1994, and references therein). The problem with most 

studies is that only single stocks were analyzed and there was usually not sufficient 

power to test for the significance of hypothesized relationships. Thus the evidence 

remained largely observational and subject to many alternative interpretations. In contrast 



the combination of data sets from various regions possesses the power to detect general 

patterns (Myers and Mertz 1998). There is only one other study that we know of which 

utilized meta-analysis to detect species interactions in oceanic ecosystems (Micheli 

1999). Her elegant analysis of small-scale mesocosm and large-scale time-series data 

arrived at similar conclusions as this study: marine pelagic food webs are structured 

simultaneously by strong bottom-up and top-down forces (Micheli 1999). In her analysis 

nutrient availability and planktivore biomass were the driving factors, whereas we 

focused on ocean temperature and cod biomass. Taken together, these results reconfirm 

that an isolated  focus on primary production and abiotic controls (commonly found in 

biological oceanography) or on species interactions (commonly found in marine ecology) 

is artificial and counterproductive (Verity and Smetacek 1996). We strongly suggest that 

these approaches need to be combined to look at marine ecosystems in a comprehensive 

way. In coastal food webs this can be achieved by factorial experimentation (Menge et al. 

1997, 1999, Worm et al. 1999, 2000, 2001, Lotze et al. 2001). In offshore food webs, 

however, we rely on the analysis of time-series data and between-system comparisons.  

We recommend the following formal procedure to detect general patterns in species 

interactions in the ocean. (1) Use diet composition, or behavioral data to establish food-

web interactions (predation on particular species or functional groups, competition 

among predators for similar resources), (2) assemble biomass time series for species that 

are likely to interact based on the diet data, (3) correct for measurement error and 

autocorrelation, using established methods, (4) correlate time series, and use random-

effects meta-analysis to combine estimates of effect size (z-transformed correlation 

coefficients), (5) Examine data sets for possibility of spatial correlation, and if necessary 



perform sensitivity analysis, where data sets that are spatially correlated are eliminated, 

finally (6) test alternative hypotheses using the same framework. We also urge scientists 

to make the raw data on which the analysis is based widely accessible, in order to 

facilitate re-evaluation and further synthesis by others. 

Like all scientific methodologies, this approach has some important limitations. Meta-

analysis cannot cope with fundamental inadequacies and biases in the data. As with any 

analysis the data must be carefully examined for inconsistencies in the methodology, 

violations of assumptions and influential outliers (Cooper and Hedges 1994). Finally, 

combining correlation coefficients cannot reveal mechanisms. This type of data analysis 

must be grounded in solid biological evidence that documents a link between two 

populations. 

We feel that some important questions could be answered with this methodology. With 

respect to the effects of overfishing of cod, increases in other prey species should be 

addressed. Catch plots, such as those presented in Fig. 2, suggest that entire guilds of 

species may be affected by the collapse of cod stocks. Also, the effects on forage fishes 

such as capelin (Lilly 1991, Magnússon and Pálsson 1991) should be analyzed to gain a 

more comprehensive view of how the ecosystem has changed. Proposed feedback effects 

that inhibit recovery of cod, such as predation by forage fishes on cod eggs and larvae 

(Köster and Möllmann  2000, Walters and Kitchell 2001), could be analyzed. The effects 

of depletion of large megafauna such as sharks or turtles need to be addressed in a 

quantitative way (Jackson et al. 2001, Jackson and Sala 2001). Finally, interactions 

between changes in predation and changes in the abiotic environment have been 

hypothesized but remain largely unexplored so far (Sanford 1999). For example, in the 



case of the classic keystone predator, upwelling-related decreases in water temperature 

greatly reduce predation by Pisaster on mussels (Sanford 1999). In this paper, we 

detected a trend towards decreased importance of cod predation with increasing mean 

ocean temperature (Fig. 6 a). we hypothesize that in warmer climates, such as the Gulf of 

Maine for example, the diversity of potential predators is increased and the effects of a 

single keystone such as cod may weaken. A comprehensive understanding of the relative 

roles of climate and species interactions is needed, in order to predict cumulative human 

effects on food-web structure and ocean climate. 
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Tables 
 
Table 1. Summary of direct information on cod predation on Pandalus. Percent diet 
refers to the mean percentage (range in brackets) of Pandalus in cod stomachs by volume 
or weight. 
 
Region Percent diet Data Reference 
Northern Newfoundland 6.7 (2.0-25.2) 1981-94 Lilly et al. 2000 
Flemish Cap 5.6 (1.3-14.5) 1993-98 Rodríguez-Marín & del Río 1999 
Barents Sea 7.2 (1.9-12.8) 1984-96 Berenboim et al. 2000 
Flemish Cap 9.6 (ND) 1993-2000 Torres et al. 2000 
Iceland 5.5 (0.6-13.3) 1980-90 Magnússon and Pálsson 1991 
Skagerrak <2 (ND) 1981 Boerje et al. 1987 
 
Table 2. Study regions, geographical positions, mean ocean temperatures, and assessment 
methods for cod and shrimp biomass estimates. RS=Research survey, CPUE=Catch per 
unit effort, XSA=Extended Survival Analysis, SPA=???. 
 
Region  Latitude Longitude  Temperature Cod Shrimp 
Labrador 55 00 -58 00 2.77 RS CPUE, RS 
Northern Newfoundland 52 30 -53 00 3.06 RS CPUE, RS 
Flemish Cap 47 30 -45 40 9.34 XSA RS 
Northern Gulf of St. Lawrence 49 50 -64 00 4.55 SPA CPUE, RS 
Eastern Scotian Shelf 44 50 -60 00 2.91 SPA CPUE, RS 
Gulf of Maine 43 30 -70 00 8.96 RS RS 
Iceland 66 30 -23 00 3.47 SPA CPUE, RS 
Barents Sea 74 00  25 00 3.92 XSA RS 
Skagerrak 57 40   7 20 6.58 SPA XSA 
 
Table 3. Pearson’s correlation coefficients, P-values and sample sizes for time series 
correlations of shrimp and cod biomass indices. Asterisks indicate parameters that were 
corrected for measurement error and autocorrelation. 
 
Region  r N  P r* N* P* 
Labrador -0.746 23 0.000 -0.827 4.8 0.173 
N. Newfoundland -0.911 13 0.000 -0.976 3.3 0.140 
Flemish Cap -0.526 12 0.079 -0.607 6.3 0.201 
N.Gulf of St. Lawrence -0.708 19 0.001 -0.827 3.4 0.438 
Eastern Scotian Shelf -0.856 21 0.000 -0.982 3.5 0.121 
Gulf of Maine -0.131 31 0.483 -0.147 9.3 0.706 
Iceland -0.459 33 0.007 -0.630 8.2 0.094 
Barents Sea -0.412 18 0.090 -0.635 11.7 0.036 
Skagerrak  0.788 11 0.004 0.808 5.0 0.192 
 



Table 4. Random-effects meta-analysis of the full data set. Results are given for weighted 
mean correlations of cod versus shrimp, cod versus temperature and shrimp versus 
temperature. The Q statistic tests for heterogeneity of effect sizes, the z statistic tests 
whether the correlation coefficient is significantly different from zero. 
 
Correlation Q df P r z P 
Cod - shrimp 10.23 8 0.249 -0.502 -2.40 0.017 
Cod - temperature 14.77 8 0.063 0.208 1.56 0.117 
Shrimp - temperature 13.53 8 0.095 -0.288 -2.04 0.041 
 
Table 5. Random-effects meta-analysis of the reduced data set. The Newfoundland and 
Gulf of St. Lawrence data sets were eliminated to correct for the possibility of spatial 
correlation.  
 
Correlation Q df P r z P 
Cod - shrimp 9.40 6 0.152 -0.475 -2.03 0.042 
Cod - temperature 14.25 6 0.026 0.199 1.16 0.246 
Shrimp - temperature 11.35 6 0.089 -0.317 -1.95 0.051 
 



Figures and Legends 

ADD MAP 

Fig. 1. Study regions in the North Atlantic Ocean.  
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Fig. 2. Catch statistics of cod (Gadus morhua, continuous line) versus crustacean prey 

species (broken lines) in the NW Atlantic. A. Cod versus Northern shrimp (Pandalus sp.) 

and B. Cod versus snow crab (Chionocetes opilio), C. Cod versus American lobster 

(Hommarus americanus). 
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Fig. 3. Cod (open symbols) and shrimp (closed symbols) biomass time series in nine 

regions of the North Atlantic. 
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Fig. 4. Linear correlation of cod and shrimp biomass time series. For analysis refer to 

Table 3. 
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Fig. 5. Random-effects meta-analysis. (A) Cod versus shrimp, (B) Cod versus 

temperature, (C) Shrimp versus temperature. Also see Table 4 and 5 for analysis. 
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Fig. 6. Relationships between the mean temperature in the study region and (A) shrimp-

cod (r=0.59, P=0.094) and (B) shrimp-temperature correlation coefficients (r=-0.08, 

P=0.833). Points represent individual regions, lines represent least-square linear 

regression fits. 
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