The Future of Marine Animal Populations

Visions for the Integration of Models and Data

Ransom A. Myers
Dalhousie University Halifax, Canada

Testing for general patterns

http://www.fish.dal.ca/welcome.html

The Present Baconian Approach

- Francis Bacon (1600’s) suggested science would proceed by compiling of data: science would simply become clear as a result.
- A census relies primarily on the collection of a large amount of data, without a clear hypothesis.
- Should CoML and OBIS be primarily hypothesis driven?
- Numbers do not become data until they are analyzed.

Purpose of FMAP

- Statistical Design of CoML - Efficiency and cost of scientific surveys can often be greatly enhanced by careful statistical design. FMAP will serve to improve future survey and experimental design.
- Data-Model Interface - Complex models require data format and access standardizations that will be provided in this project.
- Analysis - FMAP will serve as a central clearing house for important advances in analysis of present and future CoML projects.

Purpose of FMAP (next page)

- Understanding - Science progresses fastest with the formulation of simple models that increase understanding.
- Synthesis - Recent meta-analytic methods have revolutionized interpretation of medical and scientific research. FMAP will adapt and bring to CoML the latest of such techniques.
- Prediction - We will attempt to predict the future of marine life.

Statistical Design and Consulting

- SWAT (Statistical Wizards Advisory and Training (SWAT) Team)
- Data Quality Control Models for OBIS, HMAP, and field projects.
- Standard Programs for Extrapolation of Samples to Total Biomass and Numbers

Data-Model Interface

- Fisheries Data into OBIS
- Standard Data Exchange Formats
- Archiving of Non-Fisheries

Synthesis

- Meta-Analysis of Interactions
- Workshop Joint with NCES

Problem

"There is still no accepted procedure for investigating the effects of fishing, and many other anthropogenic activities, in the marine environment. In particular, marine scientists lack unfished control sites, [...] and a good statistical framework for hypothesis testing."

Source: Jennings and Kaiser 1998

Cod versus shrimp catches in all NAFO areas combined

Cod versus lobster catches

Cod versus crab catches

Cod and shrimp biomass in the North Atlantic: time series

Step 2: Random-effects meta-analysis

Other prey species: Grand Banks

- Groundfish and small forage fish biomass are inversely correlated

Source: Casey 2000

Indian, Latitude $=-35$ to -30

Atlantic, Latitude $=0$ to 5

Analysis and Understanding

- Interpolation and Overlap (using methods developed in epidemiology to put data on a common sampling frame)
- Biogeographic Modelling (improved estimates using inferred zeros).
- Pelagic Fish Biodiversity
- Movement Models
- Spatial Multispecies Models

How to measure diversity?

- Number of species
recorded depends on effort (hooks)
- Rarefaction method
(Hurlbert, 1971)
- "expected number of species encountered
from a sample of X individuals

Latitudinal gradients

- Diversity peaks at 20 - 30 degree latitude

Latitudinal gradients: a global feature

- Diversity of target species peaks at 20-30 degree latitude
- Independent data set: Japanese logbooks 19621980

The Analysis of Animal Movement Using Nonlinear State-Space Models

Ransom A. Myers
Ian D. J onsen
J oanna Mills Flemming

Offshore foraging behaviour of a leatherback turtle, Dermochelys coriacea
SST composite 10/01/2001-10/15/2001
Mike James, Dalhousie University, 2002
\$09/27/2001
$09 / 27 / 2001$

WinBUGS Code

\{

\#vague priors...ie assume we do not know process error
sigma[1]~dgamma(.001,.001)
\#strong priors...ie assume we know error of our observations
tau[1]~dgamma(1,1)
\#prior for alpha
alpha~dnorm(0,.000001)
\#prior for beta
beta~dnorm $(1.25,1)$

```
#iterate transition equation
for(i in 2:N){
for(j in 1:2){
sig2[i,j]<-sigma+alpha*(0.5+exp(-beta*temp[i-1]))
Y.true[i,j]~dnorm(Y.true[i-1,j],sig2[i])
}
}
# iterate measurement equation
for(i in 1:N){
for(j in 1:2){
Y.obs[i,j]~dnorm(Y.true[i,j],tau)
}
}
}
```

for(i in 2:N) \{
for(j in 1:2)\{

Prediction

- Global Fishing Prediction
- Models for Biodiversity
- Spatial-Temporal Prediction
- Extinction Models

_

Major Goals for the Future:

- A modeling framework to guide the CoML: how are data and models to be integrated?
- A statistical design for future data collection.
- Analysis and synthesis tools for present and future field projects.

Problems:

- The large scale patterns of the most abundant large animals in the ocean has not been studied.
- Example: Diversity of large pelagic animals (e.g. tunas, sharks, billfish, turtles) peaks between 20 and 30 degrees (north or south) in the worlds oceans.

Serial increases in Greenland shrimp

Cod and shrimp biomass in the North Atlantic: correlations

Step 1: Dealing with autocorrelation and measurement error

Simple analysis
Corrected analysis

Region	r	N	P	r^{*}	N^{*}	P^{*}
Labrador	-0.746	23	0.000	-0.827	4.8	0.054
N. Newfoundland	-0.911	13	0.000	-0.976	3.3	0.012
Flemish Cap	-0.526	12	0.073	-0.607	6.3	0.161
N.Gulf of St. Lawrence	-0.708	19	0.000	-0.827	3.4	0.165
Eastern Scotian Shelf	-0.856	21	0.000	-0.982	3.5	0.004
Gulf of Maine	-0.131	31	0.485	-0.147	9.3	0.701
Iceland	-0.459	33	0.006	-0.63	8.2	0.075
Barents Sea	-0.412	18	0.087	-0.635	11.7	0.023
Skagerrak	0.788	11	0.002	0.808	5.0	0.061

Source: Hedges \& Olkin 1985, Pyper \& Peterman 1998

Step 3: Testing environmental forcing

Shrimp - temperature $\mathrm{P}=0.174$

Labrador N. Newfoundland

Flemish Cap Gulf of St. Lawrence
E. Scotian Shelf Gulf of Maine Iceland Barents Sea

Skagerrak
FE Weighted mean
RE Weighted mean

Cod - temperature $\mathrm{P}=0.001$
weights (\%)

Step 4: Examining spatial correlation

- Cod recruitment is correlated on scales $<500 \mathrm{~km}$
- Stocks are not entirely independent
- Sensitivity analysis shows that this does not change results

Distance (Thousand km)

Step 5: Testing for latitudinal gradients

Cod - shrimp

Cod -
temperature

Shrimp temperature

