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Weights in Canadian waters  

 
 

• live-captured at sea and turtles  
  Turtles are  
    33% heavier in Canadian coastal  
   areas versus on the nesting  
   beach 

Nesting female morphometrics: St. Croix, U.S.V.I. 
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147. 
Lines fit by constant slope analysis of covariance after log transformation. 



• Three commercial fishing vessels are retrofitted seasonally for turtle research. 



Mike James  
Andrea Ottensmeyer 



Identification of high-use areas and threats to leatherback sea turtles  
in northern waters 
 
James, Ottensmeyer and Myers 
Ecology Letters (2005) 



Weights in Canadian waters  

 
 

• live-captured at sea and turtles  
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Nesting female morphometrics: St. Croix, U.S.V.I. 
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Kepler's elliptical orbit for Mars..  

http://www-gap.dcs.st-and.ac.uk/%7Ehistory/Diagrams/Kepler_orbit.gif
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24 Young of Year Grey Seals 
analysis by Greg Breed 





Jonsen, Flemming and Myers (2005) Ecology 86: 2874-2880 



Jonsen, Flemming and Myers (2005) Ecology 86: 2874-2880 
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We also carried out 
likelihood analysis 
 
This is Sir Ronald 
Fisher 
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Priors Meta-analysis of 
data from other animals 



State Space Models 
 
 
Measurement Equation 
- Relates imperfect observations to 
  true position 
 

- Estimate ARGOS 
  error with ε 
 
Transition Equation 
 
- Predicts next position from 
  behavioral model 
 

 

yt = h (αt , εt) 

observed  
location 

Error function 

true location 

 αt = ƒ (αt-1, ηt ; γ)  

parameters movement function 



αt = ƒ (αt-1, ηt ; γ)  

  

mean[t] <-  f(alpha[t-1] ; γ)  

alpha[t] ~ dlnorm (mean[t], sigma)  

How is this programmed with BUGS 

The state variable is random variable, and should NOT be  
thought of as a simple number. We write the state as a Greek  
letter, αt 

This symbol means “is distributed as”, and implies that alpha[t] is a random variable. 

What is important about the state equation? 



t = 1 
1st location = release point 

 
eg. release location estimated 

with GPS  

Prior 

Prediction 
Apply dynamics (transition eqn) 

Observation Observe a location with error 

Update 
Integrate over predicted &  

observed densities 
(Bayes Rule) 

Prior t = 2 
Updated prediction becomes 

prior for next time step 



Software 

WinBUGS: Bayesian Analysis Using Gibbs 
Sampling 

 
Bayes Rule 
 
 
 
This is the innovation likelihood 
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Movement (Transition) Equation 
- First difference correlated random walk 
 
dt  =  γT(θ)dt-1  +   N2(0,Σ) 
αt = αt-1+ dt 
 
Observation Equation 
 
yt = t-distribution (αt , σt, υt ) 
 
 
Plus an algorithm to regularize estimated 
locations in time 



Movement (Transition) Equation 
 
dt  =  γT(θ)dt-1  +   N2(0,Σ) 
αt = αt-1+ dt 

αt 
αt-1 

dt-1 
dt 

θ (turn angle) 



Observation Equation 
 
yt = t-distribution (αt , σt, υt ) 

αt 

yt 









Sources of Uncertainty 
• Estimation error 

– Data observed with 
error 

– Errors can be non-
Gaussian 
 

Radio or acoustic 
telemetry 

Satellite telemetry 
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Argos location errors 

data from Vincent et al. 2002 



Argos errors follow  t-distributions:  
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Jonsen, Flemming, Myers, Ecology, 2005 
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Tag Precision 
 
yt = t-distribution (αt ,cσt, υt ) 

σ for each location class is assumed 
known (Vincent et al. 2002, Jonsen et 
al 2005) 
 

c is an estimated parameter that 
scales the variance to each tag 
 
Best tags are 1000’s of times more 
precise than the worst tags 
 
Best tags in a single lot can be 100’s of 
times more precise than worst tags 
from a lot  

  66oW   64oW   62oW   60oW 

  41oN 

  42oN 

  43oN 

  44oN 

  45oN 

  65oW   64oW   63oW   62oW   61oW   60oW   59oW 
  43oN 

  44oN 

  45oN 

  46oN 

  47oN 

  48oN 

  49oN 



State-space models allow you to think about things, that 
it is very difficult to think about otherwise 





It is essential to treat groups of 
animals simultaneously for 
maximum utility of the data. 

 



Leatherback turtles are unique in that they 
expose their pineal spot to sunlight. 



Turtles are close to the surface during the  
day during migration 

Night Day 

James Ottensmeyer Eckert Myers in press Can. J. of Zoo. 



Examining Diel Migration 
Behaviour in Leatherbacks 

 

Jonsen, James Myers. in press. Journal of Animal Ecology 











Results are consistent with the hypothesis that 
the pineal spot improves navigation. 



Dynamics of behavior is very nonlinear, 
to determine hot spots and foraging 

• Solution: Markov switching models between 
behavioral modes 

• Dynamics within a behavioral mode is linear 



State-Space Switching Models 

Federal Reserve Bank of St. Louis Review, July/August 2005, 87(4), pp. 435-52. 



State-space model (SSM) 

Y1 Y3 

X1 X2 X3 

Y2 

“True”  state 

Noisy observations 



Hidden Markov model (HMM) 

Y1 Y3 

X1 X2 X3 

Y2 

Phones/ words 

acoustic signal 

transition 
matrix 

Gaussian 
observations 

Sparse transition matrix ) sparse graph 



Switching State Space Model 
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Filtered Data 
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Derived Variables 
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A Switching SSM 
Switching model, estimates switches b/w 

2 behavioural modes 
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ρs(f)    = 0.54 
ρs(m)  = 0.82 



Summary 
• State-space models allow you to think about 

problems which have no conventional solution 
• Fundamentally different approach to analysis of 

complex, error-prone data emphasis on 
estimation of “true” states, biological 
parameters and uncertainty 

• Models can be fit to other types of sequential 
movement data (GPS, Archival tags) 
 



The Future 

• Better incorporation of oceanographic data 
• Model testing, statisticians do NOT know 

how to compare models with non-
Gaussian errors 

• More “user friendly” (i.e. less “user angry” 
methods). This would include an easy to 
use library with a variety of possible 
behaviour.  

• Include more than 2 states in the the 
switching models. 

 



Minimise the difference between the observed (S) and implied (Σ) 
covariances by adjusting the path coefficients (B)  
 

The implied covariance structure:  
 x = x.B + z 

x = z.(I - B)-1 

x : matrix of time-series of Regions 1-3 
B: matrix of unidirectional path coefficients 
 
Variance-covariance structure: 

xT . x  = Σ  = (I-B)-T. C.(I-B)-1 
where C = zT z 

 
xT.x is the implied variance covariance structure Σ 
C contains the residual variances (u,v,w) and covariances 
 
The free parameters are estimated by minimising a [maximum likelihood] 

     

Structural Equation Modelling 
(SEM) 
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Modeling Sequential Data 
 Sequential data arises in many areas of science & 

engineering 

 Types of data sources: 

Time series, generated by a dynamical system  

Sequence generated by one-dimensional spatial 
 process 

 On- line analysis vs. Off-line analysis  



Classical Solutions 
• Classic approaches to time-series prediction 

– Linear models: ARIMA(auto-regressive integrated moving 
average), ARMAX(autoregressive moving average 
exogenous variables model) 

– Nonlinear models: neural networks, decision trees 

 
• Problems with classic approaches 

–  prediction of the future is based on only a finite window  
–  it’s difficult to incorporate prior knowledge   
–  difficulties with multi-dimensional inputs and/or outputs   

 

 



State-Space Models 
• Assumptions:   

– There is some underlying hidden state of the world (query) that generates the 
observations (evidence), and evolves in time, possibly as a function of our 
inputs 

– Models are first-order Markov, i.e.,  
              P(Xt| X1:t-1) = P(Xt | Xt-1)  
– observations are conditional first-order Markov  
              P(Yt | Xt , Yt-1) = P(Yt | Xt)  
– Time-invariant or homogeneous 
 

• The goal: computing of the belief state:  
 The belief on the hidden state of the world given the observations up to the 

current time y1:t and inputs u1:t to the system, P( X | yS1:t, u1:t )  
 
• State-space model must define a prior P(X1), a state-transition function, 

P(Xt | Xt-1) , and an observation function, P(Yt | Xt) 
  

 



SSM: Representation 

Hidden Markov Models (HMMs):  
 Xt is a discrete random variables 
 
Kalman Filter Models (KFMs):  
 Xt is a vector of continuous random variables 
 
Dynamic Bayesian Networks (DBNs): 

more general and expressive language for representing 
state-space models 



SSM: Inference 
• A state-space model defines how Xt generates Yt and Xt.  
• The goal of inference is to infer the hidden states (query) 

X1:t given the observations (evidence) Y1:t.  
 

 



SSM: Inference (cont.) 
• Inference tasks: 

– Filtering (monitoring): recursively estimate the belief state using Bayes’ 
rule 

• prediction: computing P(Xt | y1:t-1 ) 
• updating: computing P(Xt | y1:t ) 
• throw away the old belief state once we have computed the prediction 

(“rollup”) 
– Smoothing: estimate the state of the past, given all the evidence up to the 

current time 
• Fixed-lag smoothing (hindsight): computing P(Xt-l | y1:t ) where  l > 0 is the lag 
• Fixed-interval smoothing (offline): computing P(Xt | y1:T ) for all  

– Prediction: predict the future 
• Lookahead: computing P(Xt+h | y1:t ) where h > 0 is how far we want to look 

ahead 
– Viterbi decoding: compute the most likely sequence of hidden states 

given the data 
• MPE (abduction): x*

1:t = argmax P(x1:t | y1:t )  
 

1 t T≤ ≤



SSM: Learning 
 

• Parameters learning (system identification) means estimating from data 
these parameters that are used to define the transition model P( Xt | Xt-1 ), 
the observation model P( Yt | Xt ) & the prior P(X1)  

• The usual criterion is maximum-likelihood(ML)  
• The goal of parameter learning is to compute 

– θ*
ML = argmax θ P( Y| θ) = argmax θ log P( Y| θ) , where  

 
 
 

– Or θ*
MAP = argmax θ log P( Y| θ) + log P(θ)   if we include a prior on the 

parameters 
– Two standard approaches: gradient ascent and EM(Expectation Maximization) 

 
• Problem: Hidden variables complicate finding of the globally optimal 

parameters  
• Structure learning: more ambitious 
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HMM: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node 
per time slice. 

• X: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P( X1 )  
– The transition model P( Xt | Xt-1 ) 
– The observation model P( Yt | Xt ) 
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HMM: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node 
per time slice. 

• X: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P( X1 )  
– The transition model P( Xt | Xt-1 ) 
– The observation model P( Yt | Xt ) 

• HMM is the simplest DBN 
– a discrete state variable with arbitrary dynamics and arbitrary measurements 
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Y3 

α4 

Y4 



Special Case of State-space 
Models: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node per 
time slice. 

• α: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P(α1 )  
– The transition model P(αt | αt-1 ) 
– The observation model P( Yt | αt ) 

α1 

Y1 

α2 

Y2 

α3 

Y3 

α4 

Y4 



HMM: Hidden Markov Model 

   
  

    
   
     

        
        
        

     
      

    
       

     
   

α1 

Y1 

α2 

Y2 

α3 

Y3 

α4 

Y4 

α1 

Y1 

α2 

Y2 

α3 

Y3 

α4 

Y4 



KFM: Kalman Filter Model 
• KFM has the same topology as an HMM 
• all the nodes are assumed to have linear-Gaussian distributions  
  
 x(t+1) = A*x(t) + v(t),  
   v ~ N(0, Q) : process noise, x(0) ~ N(X(0), V(0))  
    y(t) = C*x(t) + w(t),  
       w ~ N(0, R) : measurement noise 
• Also known as Linear Dynamic Systems (LDSs) 

– a partially observed stochastic process  
– with linear dynamics and linear observations: f( a + b) = f(a) + f(b) 
– both subject to Gaussian noise 

• KFM is the simplest continuous DBN 
– a continuous state variable with linear-Gaussian dynamics and 

measurements 
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Y2 



All Roads Lead From Gauss                              
1809 

•             “ … since all our measurements and observations are nothing more 
•                 than approximations to the truth, the same must be true of all 
•                 calculations resting upon them, and the highest aim of all 
•                 computations made concerning concrete phenomenon must be to      
•                 approximate, as nearly as practicable, to the truth. But this can be 
• accomplished in no other way than by suitable combination of more  
• observations than the number absolutely requisite for the determination of  
• the unknown quantities. This problem can only be properly undertaken  
• when an approximate knowledge of the orbit has been already attained,  
• which is afterwards to be corrected so as to satisfy all the observations 
• in the most accurate manner possible.” 
•   
•  - From Theory of the Motion of the Heavenly Bodies Moving about the      

 Sun in Conic Sections, Gauss, 1809 
•                   



What does a Kalman filter do ? 
• The Kalman filter propagates the conditional density in 

time. 
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How does it do it ? 
 

• The Kalman filter iterates between two steps 
– Time Update (Predict) 

•  Project current state and covariance forward to the next 
time step, that is, compute the next a priori estimates. 

– Measurement Update (Correct) 
• Update the a priori quantities using noisy measurements, 

that is, compute the a posteriori estimates. 
 
 

• Choose Kk to minimize error covariance 
( )−− −+= kkkkkk xMxKyy ˆˆˆ



You can ask questions and think 
about questions you can not 

otherwise. 

• Circle of confusion 
• Turtle speed at night 
• Are there modes, or “behavioural states” in 

their behaviour.  
 
 



Random Effect Model 



Filtered Data 
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Male leatherback movements 
 
• not previously described 
 

• annual migratory cycle  
  that includes movement  
  between temperate  
  foraging areas and tropical  
  breeding areas 
 
James, Eckert and Myers  
Marine Biology (in press) 
 
 



Derived Variables 
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A Switching SSM 
Switching model, estimates switches b/w 2 

behavioural states 
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A Switching SSM 
Switching model, estimates switches b/w 

2 behavioural modes 
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