The Global Loss of Large Marine Predators

Pew Global Sharks Assessment
FMAP (Future of Marine Animal Populations)
http://www.globalsharks.ca Lenfest Extinction Project

What was the most common large animal ($>40 \mathrm{Kg}$) in the world? (perhaps this one was)

Loss of sharks in the Gulf of Mexico

300 fold_decline - no_nene noticed

Oceanic Whitetip captures per 10,000 hooks

Right whale with lobster bouys-Sept. 2004

Same right whale - April 2005???

Preliminary 2002 Maine Landings By Value

Total Value: $\$ 299,198,465$ as of 5/20/03

Data compiled collectively by the Maine Department of Marine Resources and the National Marine Fisheries Sen

Nova Scotia has had a larger increase in lobster landings in the Gulf of Maine

Comparison in 2003

	Maine	LFA 34 (S.W.NS)	Maine/LFA34
Landings tonnes	24935	19000	1.31
Fishieres	6812	986 (licenses)	
Traps	3,189,471	$\begin{aligned} & 369750 \text { (fall) } \\ & 394400 \text { (spr) } \end{aligned}$	8.62 (fall number)
Season-days	365	185	1.97
Minimum overcapacity of Maine compared to Southwest			~ 13

In Canada, half the catch is caught in one month, this would results in twice the optimal fishing mortality, this implies that effort is about 100 times too high in the USA.

Collapse of cod: cost \sim Can\$5,000,000,000.00

Newfoundland cod The loss of an industry that employed 40,000 people, and had sustained a culture for 400 years.

Cod in Newfoundland declared NOT endangered in 2003.

St. Pierre Bank

 (south of Newfoundland) $)_{800}$> 90% decline in numbers
> Approx. 50\% decline in size
> Large changes in species composition

The Loss of Cod History

Fig. 21.-Recaptures to October, 1934, of cod tagged in the Jeddore Rock to Egg Island area, N.S., in May, 1934.

Fig. 18.-Recaptures in May to October, 1934, 1935, 1936 and 1937, of cod tagged near Halifax in June, 1934.

Fig. 15.-Recaptures during "summers" of 1927, 1928, 1929 and 1930 of cod tagged off Shelburne, N.S., during September and the first day of October, 1926.

There is much less than 10% of cod left -

Proportion of virgin biomass

Source: Myers and Worm 2005.
Proc. R. Soc. Lond. B

What is the impact of aquaculture on the survival of wild salmon?

Jen Ford and Ransom Myers

What is the impact of aquaculture on the survival of wild salmon?

(note all the actual work on this was done by Jen Ford)

(seuuol) uo!̣onpoid ann|noenbe uounes o! !uent uplon

Meta-analysis of paired comparisons

A PAIRED COMPARISON EXPGRIMENT IS ONE OF THE MOST EFFLCTIVE WAYS TO REDUCE MATURAL VARIABILTY WHLL COMPARING TREATMENTS. FOR ELAMPLE, IN COMPARING HAND CREAMS, THE TWO BRANDS ARE RANDOMLY ASSIGNED TO EACH SUBEEGT'S RIGHT OR LEFT HANDS. THIS ELIMINATES VARIABLLITY DUE TO SKIN DIFFERENLES.

B
Source: Cartoon Guide to Statistics, Larry Gonick \& Woolcott Smith

Predicted Survivals (left axis), Exposed in Blue, Farmed Production in Red (right axis)

Change in log Survival per Tonne Aquaculture

Always repeat all analyses with independent data

Predicted Returns (left axis), Exposed in Blue, Farmed Production in Red (right axis)

Change in log Returns per Tonne Aquaculture

Farmed:Wild Ratio by Region

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

Hammerhead sharks

Sphyrna spp.

Catch per 10,000 hooks of Hammerhead Sharks

Results

1 Caribbean	6 NE Coastal
2 Gulf of Mexico	7 NE Distant
3 Florida	8 Sargasso
4 S Atlantic Bight	9 S America
5 Mid Atlantic Bight	

a. Northern Gulf of Mexico bottom shrimp trawl survey
b. NMFS offshore bottom trawl survey
c. NMFS inshore bottom trawl survey
d. Southeast U.S. SEAMAP bottom shrimp trawl survey
e. North Carolina Institute of Marine Sciences longline survey
f. Crooke commericial longline data
μ. Meta-analytic mean

Loss of Dusky Sharks in the Eastern US

Same results for trawl surveys in Gulf of Mexico
Scalloped hammerhead

Same results for trawl surveys in Gulf of Mexico

Great hammerhead

Shepherd and Myers Ecology Letters 2005

Newspaper reports of sharks in Croatia

With training, "experts" can ignore the most obvious of data:

1872 - Man's head and leg and dolphin in stomach
1872 - 8 Great White Sharks reported caught
1888 - Woman's body and lamb in stomach
1894 - Preserved at Zagreb Nat. Hist. Mus.
1926 - Woman's shoes, laundry in stomach
1946 - Pig of 10 kg in stomach
1950 - Encounter during eating a dead calf
1954 - Attack on boat
1975+ -No sightings.

Workshop on estimation of trends from terrible

 dataa)

b)

c)

d)

e) Probablity of Accepting
Non-extinction

Reference Year

Decline of Mediterranean Sharks

By catch associated with a Tuna Trap
In Ligurian Sea
"Tonnara di Camogli"

Decline of Hammarhead sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Decline of Mediterranean Sharks

By catch associated with a Tuna Trap

In Tirrenian Sea

"Tonnarella di Baratti"

Hammerhead shark

School shark

Smooth-hound

Loss of Reef Sharks in the Hawaiian Islands

N.W.Hawaiian Islands vs Main Hawaiian Islands

Friedlander A.M. \& E.E. DeMartini 2002 - Marine Ecology Progress Series

Meta-analysis correcting for phylogenyFishing mortality required to drive species extinct

Bluefin Tuna / 1000 hooks 1960

1	2	3	4	5	6	7	8	9

Bluefin Tuna / 1000 hooks 1990

Trends for Large Predatory Fishes R. Myers \& B. Worm (2003). Nature

Catch Per Hundred Hooks, Year $=1952$

Catch Per Hundred Hooks, Year $=1953$

Catch Per Hundred Hooks, Year $=1954$

Catch Per Hundred Hooks, Year $=1955$

Catch Per Hundred Hooks, Year $=1956$

Catch Per Hundred Hooks, Year $=1957$

Catch Per Hundred Hooks, Year $=1958$

Catch Per Hundred Hooks, Year $=1959$

Catch Per Hundred Hooks, Year $=1960$

Catch Per Hundred Hooks, Year $=1961$

Catch Per Hundred Hooks, Year $=1962$

Catch Per Hundred Hooks, Year $=1963$

Catch Per Hundred Hooks, Year $=1964$

Catch Per Hundred Hooks, Year $=1965$

Catch Per Hundred Hooks, Year $=1966$

Catch Per Hundred Hooks, Year $=1967$

Catch Per Hundred Hooks, Year $=1968$

Catch Per Hundred Hooks, Year $=1969$

Catch Per Hundred Hooks, Year $=1970$

Catch Per Hundred Hooks, Year $=1971$

Catch Per Hundred Hooks, Year $=1972$

Catch Per Hundred Hooks, Year $=1973$

Catch Per Hundred Hooks, Year $=1974$

Catch Per Hundred Hooks, Year $=1975$

Catch Per Hundred Hooks, Year $=1976$

Catch Per Hundred Hooks, Year $=1977$

Catch Per Hundred Hooks, Year $=1978$

Catch Per Hundred Hooks, Year $=1979$

Catch Per Hundred Hooks, Year $=1980$

Study area

Analysis repeated using independent research data

Ward and Myers 2005 Ecology

These estimates are conservative: 2 (fish are smaller)

Change in body size

Ward and Myers 2005 Ecology

Ward and Myers 2005 Ecology

Loss of sharks in the Gulf of Mexico 300 fold decline - no one noticed

Oceanic Whitetip captures per 10,000 hooks

What about prey fish?

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with Henry Waszczuk and Italo Labignan, 1995,

Explosion of Pomfrets in the Gulf of Mexico ~ 1000 fold increase - no one noticed

Pomfret captures per 10,000 hooks

USA Bay Scallops Landings

Loss of softshell clams south of Long Island

Meta-analysis of cownose ray trends

Delaware Bay trawl survey

NMFS inshore trawl survey

VIMS seine survey

North Carolina inner bays seine survey

Increase in small sharks: Sharpnose shark

NMFS offshore trawl survey

GREAT HAMMERHEAD SHARK PREDATION UPON SPOTTED EAGLE RAY

Loss of hammerheads from surveys

Shepherd and Myers, 2005, Ecology Letters

Generalized linear model results

	Estimate	StdErr	p	$\mathrm{k} /$ scale
Abundance	-0.169	0.0171	$5.67 \mathrm{e}-23$	4.28
Length	-0.0105	$1.4 \mathrm{e}-3$	$8.85 \mathrm{e}-14$	18.8

Great hammerhead

Generalized linear model results

	Estimate	StdErr	p	$\mathrm{k} /$ scale
Abundance	-0.143	0.0812	0.079	1.96
Length	$-7.19 \mathrm{e}-3$	0.0707	0.919	1

Generalized linear model results

	Estimate	StdErr	p	$\mathrm{k} / \mathrm{scale}$
Abundance	-0.172	0.0443	$9.99 \mathrm{e}-5$	4.28
Length	-0.0136	$5 . \mathrm{e}-3$	$6.69 \mathrm{e}-3$	63.2

Relative abundance

Instaneous rate of change in abundance with time

Fig 1. Total and stockade mortality

Mortality of almost 100\% during fall migration of cownose rays

\backsim August Density \rightarrow Mortality

Mortality of almost 100\% during fall migration of cownose rays

August bay scallop density

Trophic Cascades: Consequences of the loss of top predators may be greater than we think

Conservation of coral reefs

Deleterious Activities

Consequences

How to change things?

...confronting the large scale crisis [of biodiversity] requires major scaling -up of management efforts...

- International policies in the control of human threats
- Generation of human conscience about threats
- Efficient networks of Protected Areas

0.01% of the world's coral reefs are fully protected from over-harvesting, poaching, and pollution.

First, map all the coral reefs in the world.

Science, Mora et al. Embargoed until June 22

0.01% of the world's coral reefs are fully protected from over-harvesting, poaching, and pollution.

Second, interview over 1000 coral reef managers.

Science, Mora et al. Embargoed until June 22

0.01% of the world's coral reefs are fully protected from over-harvesting, poaching, and pollution.
 Third compile the results.

Science, Mora et al. Embargoed until June 22

Effectiveness of coral reef MPAs worldwide

Multipurpose
$18.7 \% \quad 12 \%$

Gaps to coverage

If one has in mind that...

1) coral reefs are declining worldwide, and
2) their conservation is currently inadequate and insufficient
...then, it is not bad to conclude that

coral reefs are currently screwed!

To be published in Science June 23

Coral Reefs and the Global Network of Marine Protected Areas

Camilo Mora, Serge Andréfouët, Mark J. Costello, Christine Kranenburg, Audrey Rollo,1 John Veron, Kevin J. Gaston, Ransom A. Myers

The First Collective Act of Humanity was to save the great whales -
despite massive denial

- we can do
the same for the remaining virgin areas of the oceans and for the great sharks.

Major shrimp stocks in the North Atlantic

Cod and shrimp biomass in the North Atlantic:

 time seriesLabrador

Northern Newfoundland

Flemish Cap

Worm and Myers, Ecology 2003

Step 2: Random-effects meta-analysis

Blue marlin (Makaira nigricans)

Sailfish
 (Istiophorus albicans)

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca
Species Group Time (yr) Source

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca

Single species models are not even remotely consistent with the data, e.g. Swordfish from the South Atlantic

Sensitivity 4, Japanese index

White Marlin: Atlantic, single species models do not work Very well.

ICCAT shark assessments in the Atlantic don't even remotely fit reliable data: Similar pattern for US government research surveys.

Figure 10 (above). Fit of the model to the North Atlantic blue shark CPUE data for each of the runs considered.

Atlantic, Latitude $=-15$ to -10

Bluefine tuna (observed diamonds) and modeled - not a very good fit.

RED HERRING 1: RATIO ESTIMATION

Scenario A

Scenario B

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 4: The sharks probably declined

 more

Oceanic Whitetip captures per 10,000 hooks

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative 7: changes in depth increases overall efficiency.

Declines confirmed by independent data:

> The initial high catch rates were seen in early research surveys by Japan and US.
> Declines seen in harpoon fisheries for swordfish and tuna.
> Most tuna traps in the Mediterranean have largely been abandoned, Italy there is a decline from 100 to 3 tuna traps.
> Complete loss of species in some areas.

Loss of Bluefin Tuna Populations in the Atlantic

Perceived Contradiction in Initial Rapid Decline in CPUE

> 1. Large declines occurred when effort was relatively small

Perceived Contradiction in Initial Rapid Decline in CPUE

2. Present effort is much higher.

Perceived Contradiction in Initial Rapid Decline in CPUE

3. Present fishing mortality due to longlines is around 0.6

Perceived Contradiction in Initial Rapid Decline in CPUE

IF catchability is constant
THEN the population dynamics are impossible.

However, catchability decreases with size and size has declined

A Toy Model

> Recruitment constant
> Longline effort increases linearly over 35 years
> Catchability is proportional to the product of: (a) a cumulative normal and (b) food intake (respiration is proportional to the $2 / 3$'s power of mass)
> Present fishing mortality is around 0.6.

North Atlantic albacore cumulated catches of youngs and adults fish

Conclusion

> Immediate action needed to protect some sharks, leatherbacks, loggerheads, and some tuna (Atlantic northern bluefin)
> Productivity (juvenile survival) has increased with exploitation.
> Rapid declines in CPUE reflect real declines in large fish
> Reduced effort is needed to achieve greater economic yield

Acknowledgements

$>$ Boris Worm, Peter Ward, Leah Gerber, Julia Baum, Dan Kehler, Francesco Ferretti
$>$ Pew Charitable Trusts
Sloan Foundation - Gensuls of Marine Life, Future of Marine Animal Populations (EMAP)

- NSERC
- Pelagic Fisheries Research Program
- German Research Council
> Killam Foundation

2. Numerous colleagues who shared data

Fig. 3. Recent reconstruction, using virtual population analysis, of the Newfoundland northern cod decline, compared with estimates and projections published in various years after Canada took over the fishery under extended jurisdiction. VPA estimates based on data in Baird et al. (1992) (see also Hutchings and Myers, 1994). NAFO estimates from annual reports for years indicated of North Atlantic Fisheries Organization Scientific Council Reports, Dartmouth, NS. CAFSAC estimates from Canadian Atlantic Fisheries Scientific Advisory Committee Advisory Documents 89/1 and 91/1.

Rapid decline in older albacore.

Figure 7: Evolution of contribution of age classes 6 to 10+ computed by Morita (1977) in longliners albacore catches, 1956-1974.

Marine ecosystem robustness and the collaps marine fisheries

Ransom A. yers (RAM)
Dalhousie University, Halifax,
Canada

One hypothesis:

Collapse and Conservation of Shark Populations in the Northwest Atlantic

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

U.S. Atlantic pelagic longline sets 1986-2000

Political action is costly for any scientist.

However, it also has great benefits.

To act is to live.
To be suppressed is to die.

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

The rest of the slides are back up.

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

Letter from senate

Put in cod

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative: 6 Fishermen are smarter (gps, satellite information, ACDP (Acoustic Current Doppler Profiler)).

Locations of a leatherback turtle over a two week period tagged by my student Mike James that maintains its position within a cold core ring (somehow).

However, fish may be a lot smarter too (the stupid ones were caught).

Step 8: You need emotional support. Support from colleagues and family is essential. You cannot do it (for long) by yourself.

Why is it so important. What makes them work.

Shelf seas

Government science was consistently wrong, and there was no effective voice from universities.

Lessons I Learned from the Cod Disaster:

> Government constrained scientists may consistently ignore what the data tells them.
> Independence is key.
> Multiple, independent analyses are crucial; or else you will be dismissed.
> Speak clearly and honestly to the press, the politicians must know that someone is watching.
> Be proactive, once an animal is ecologically extinct it is too late.

RAM's 12 step plan: From hard core math weenie to passionate conservationist: A PERSONAL ODYSSEY.

Reaching the heart through mathematics.

Final point: keep fighting, keep hoping! This happened last week: Oceanic Whitetip declared critically endangered by ICUN

> Last year is was "species of least concern".
> This change was not because we published one paper in Science, but papers based upon 3 independent datasets (plus 2 math/stats technical papers).
> Skeptics remain - more analyses are in prep from scuba surveys of jellyfish (one notices large sharks while diving in the clear open ocean.

Conclusion: The Factor of 10 Hypothesis

> Scientific investigations of marine fish stocks almost always begin after the fact.
> Here we compile data from which the size of the community of large predatory fishes can be estimated.
> New fisheries tend to deplete the biomass of large predators by at least a factor of 10 .
> These declines happen very rapidly, usually in a decade or less.

Figure stolen from Paul Anderson
> The Good -
> Ban directed fisheries on sharks.
> Control fishing on skates.
> Keep a watch on bycatch.
> The Alaska Board of Fisheries prohibited all directed fisheries for sharks in 1998. In Southeast the bycatch rate for sharks and skates taken during other longline fisheries is 35% of the target species.

Figure 1. Big skate, Raja binoculata, with stock assessment author for scale.

All large sharks declined

Shallow water species that do not survive discarding: large declines:

State-space models allow you to think about things, that it is very difficult to think about otherwise

Are the pleistocene extinctions* going to be repeated in the ocean?

*Present North American biota has lost almost all large species -
We have no mammoths, mastodons, giant ground sloths, giant beavers, and 65 other species that weighted more than 100 kilograms.

Years Ago

The extinction of large mammals and flightless birds coincided closely with the arrival of humans in North America, Madagascar, and New Zealand, and less decisively earlier in Australia. In Africa, where humans and animals evolved together for millions of years, the damage was less severe.

Deeper skate species that survive discarding increased

Stock Assessment and Fishery Evaluation of Skate species (Rajidae) in the Gulf of Alaska

Spiny Dogfish, Northwest Atlantic: Good Science - Ugly Decisions

Danish Landings of Bluefin Tuna

Thunnus thynnus

Landings of Bluefin Tuna

Thunnus thynnus in Northern Europe*

Landings of Bluefin Tuna

Thunnus thynnus in Northeast Atlantic

Life history of sharks...

Fecundity

Decline of Mako sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

1 Caribbean	6 NE Coastal
2 Gulf of Mexico	7 NE Distant
3 Florida	8 Sargasso
4 S Atlantic Bight	9 S America
5 Mid Atlantic Bight	

Decline of Thresher sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Decline in Large Sharks's Catches by an Italian Tuna Trap

Vacchi M. et al. 2000-4th-Meeting-of-the-European-Elasmobranch-Association-Proceedings

Loss of Bluefin Tuna Populations in the Atlantic

North Sea Bluefin Tuna

Strategy:

> Formulate the most important problem in terms of a critical model where in terms of a few parameters that can be well estimated.
> Compile all data in the world on the issue
> Analyze it the right way

Outline of data flow to produce global maps of abundance for reef species. The goal is produce maps for species that are of interest to divers over time, and estimate the "pristine" abundances and biomass, and t he time trends over time to the present. This will be critical to estimating extinction probability.

Raw data on paper:

- old Japan data from Pacific
- old Japan data from Atlantic (one publication from equatorial Atlantic)
- old California Department of Fish and Game reports
- recent Japan data ICCAT documents (at least 5)
- old Canadian data
- old US east coast reports (we have a few on hand, others may be hidden at NMFS Gloester lab or in Miami)
- US expedition to the Indian Ocean in 1960 (Andy Bakum)
- Uruguay (p. 825 in Swordfish white books)
- Dave Long does longline surveys at NOAA La Jolla

Raw data in digital form:

- updates on Canadian data
- updates on US data
- observer data from the Mediterranean
- South Pacific Commission (we have much of this and could get more)
- Indian Ocean Commission?
- data sources in supplement to Lewison: Ecology Letters (2004) 7: 221-231
- Costa Rica
- cooperative shark tagging in Rl
- NE US, Simpendorfer 2002
- Bolten's data from Azores

Figure 3. Calibration of data gathered from professional and amateur divers.

Figure 3. Calibration of data gathered from professional and amateur divers.

Male leatherback movements

- not previously described
- annual migratory cycle that includes movement between temperate foraging areas and tropical breeding areas

James, Eckert and Myers Marine Biology (in press)

Turtles are close to the surface during the day during migration

Leatherback turtles are unique in that they expose their pineal spot to sunlight.

Trinity Bay

Trinity Bay

St. John's to Cape Race

Conception Bay

The efficiency of the Newfoundland cod fishery had not changed in 4 centuries.

The only bioeconomic equilibrium of a highly subsidized fishery is zero fish.

Catch rates in the 1980's per person (20,000 fishers who caught ~200,000 metric tonnes of cod).

Trinity Bay

$\rightarrow \substack{\begin{subarray}{c}{\frac{2}{0} \\ 0} }} \\{\hline 0} \end{subarray}$

Marine data Communities are Claimed to be Very compex: Link, MEPS. 2002.

Fig. 1. Species and links of the northwest Atlantic food web. This tangled 'bird's nest' represents interactions at the approximate trophic level of each species, with increasing trophic level towards the top of the web. The left side of the web generally typifies pelagic organisms, and the right to middle represents more benthic/demersally oriented organisms. Red lines incicate predation on fish. $1=$ detritus, $2=$ phytoplankton, $3=$ Calanus sp., $4=$ other copepods, $5=$ ctenophores, $6=$ chaetognatha (i.e. arrow worms), $7=$ jellyfish, $8=$ euphasiids, $9=$ Crangon sp., $10=$ mysids, $11=$ pandalids, $12=$ other decapods, $13=$ gammarids, $14=$ hyperiids, 15 = caprellids, $16=$ isopods, $17=$ pteropods, $18=$ cumaceans, $19=$ mantis shrimps, $20=$ turicates, $21=$ porifera, $22=$ cancer crabs, 23 = other crabs, $24=$ lobster, $25=$ hydroids, $26=$ corals and anemones, $27=$ polychaetes, $28=$ other worms, $29=$ starfish, $30=$ brittle stars, $31=$ sea cucumbers, $32=$ scallops, $33=$ clams and mussels, $34=$ snails, $35=$ urchins, $36=$ sand lance, $37=$ Atlantic herring, $38=$ alewife, $39=$ Atlantic mackerel, $40=$ butterfish, $41=$ loligo, $42=$ illex, $43=$ pollock, $44=$ silver hake, $45=$ spotted hake, $46=$ white hake, $47=$ red hake, $48=$ Atlantic cod, $49=$ haddock, $50=$ sea raven, $51=$ longhom sculpin, $52=$ little skate, $53=$ winter skate, $54=$ thorny skate, $55=$ ocean pout, $56=$ cusk, $57=$ wolfish, $58=$ cunner, $59=$ sea robins, $60=$ redfish, $61=$ yellow tail flounder, $62=$ windowpane flounder, $63=$ summer flounder, $64=$ witch flounder, $65=$ four-spot flounder, $66=$ winter flounder, $67=$ American plaice, $68=$ American halibut, $69=$ smooth dogfish, $70=$ spiny dogfish, $71=$ goosefish, $72=$ weakfish, $73=$ bluefish, $74=$ baleen whales, $75=$ toothed whales and porpoises, $76=$ seals, $77=$ migratory scombrids, $78=$ migratory sharks, $79=$ migratory billfish, $80=$ birds, $81=$ humans

Changes in the Bohai Sea

Figure 10. Decadal-scale variations of ecosystem productivity at different trophic levels in the Bohai Sea (phytoplankton abundance, $\times 10^{+}$cell m^{-3}, wooplankton biomass, $\mathrm{mg} \mathrm{m}{ }^{-3}$, fish biomass, kg haul $\mathrm{l}^{-1} \mathrm{~h}^{-1}$).

Is shrimp trawling driving sharks and rays extinct?

Shallow species are going extinct Deep species are increasing

Increase

1950s

1960s

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-1369

1970s

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-1369

1980s

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-1369

1990s

Validate hotspots across species groups

Source: Worm et al. 2005.
Science: 309:1365-1369

$$
\mathrm{d}_{\mathrm{t}}=\gamma_{\mathrm{s}} \mathrm{~T}\left(\theta_{\mathrm{s}}\right) \mathrm{d}_{\mathrm{t}-1}+\delta_{\mathrm{s}} \mathrm{~T}\left(\theta_{\mathrm{t}-5}\right) \mathrm{d}_{\mathrm{t}-5}+\mathrm{N}_{2}(0, \Sigma)_{\mathrm{s}}
$$

$$
\alpha_{\mathrm{t}}=\alpha_{\mathrm{t}-1}+\mathrm{d}_{\mathrm{t}} \quad \theta \text { (turn angle) }
$$

$s=$ behavioural state ($1=$ migrating; $2=$ foraging ${ }^{5}, 3=$ search $)$
$\gamma, \theta, \& \Sigma$ are now 3 element vectors, 1 element for each state

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{t}}=\gamma \mathrm{T}(\theta) \mathrm{d}_{\mathrm{t}-1}+\mathrm{N}_{2}(0, \Sigma) \quad \theta \text { (turn angle) } \\
& \alpha_{\mathrm{t}}=\alpha_{\mathrm{t}-1}+\mathrm{d}_{\mathrm{t}} \text {, }
\end{aligned}
$$

Observation Equation

$y_{t}=\mathrm{t}$-distribution $\left(\alpha_{t}, \sigma_{t}, v_{t}\right)$
α_{t}
y_{t}

Protect diversity hotspots in national waters

> Special places where many species aggregate
> Key habitats
> Food supply

Source: Worm et al. 2003. PNAS 100:9884-9888

Use remaining hotspots for global conservation

> Consistent patterns of species richness and density
> Five major hotspots:

- U.S. east coast
- Hawaiian chain
- Southeast Pacific
- Australian east coast
- Sri Lanka

Source: Worm et al. 2005.
Science 309:1365-1369

Questions?

> What are the fundamental changes in a community that occur after the apex predators are removed?
> Have lower trophic levels responded?
> How can we carry our a meta-analysis in different communities that may not be independent?

"Take all of these scientists if they feel constrained working within government and make them free," he said. "Scientists are as capable of being prima donnas and as petulant and pompous as anybody else."

Former fisheries minister Brian Tobin. Globe and Mail Aug. 23, 1997.

Hierarchical Bayes State-Space Model (HB SSM)

Reduce fishing mortality for sensitive species for survival of the species

The Rise of the Marine Mesopredators

Pelagic Sting Ray Pteroplatytrygon violacea

Photos from Phillip Colla, photography

Explosion of Pelagic Stingrays in the Gulf of Mexico ~1000 fold increase - no one noticed

Pelagic stingray captures per 10,000 hooks

Examining Diel Migration Behaviour in Leatherbacks

Jonsen, James Myers. in press (almost). Journal of Animal Ecology

Global decline in ocean predator diversity

> Increasing catches
> Decreasing diversity
> Long-term decline linked to fishing
> Yearly variability linked to climatic changes

ENSO affects diversity across entire Pacific

Species richness

-0.15	-0	-0.05	0	0.5	0.1	015

Blue marlin catch rates

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005.
Science 309:1365-1369

Understand oceanographic drivers of diversity

Patterns of diversity

 were explained by- Mean temperature
- Fronts and eddies
- Oxygen

Validate hotspots across species groups

Source: Worm et al. 2005.
Science: 309:1365-1369

There is always a rapid loss of fitness in the wild with hatcheries; after a few generations hatchery salmon may be useless for recovery.

