
Generalized linear models for zero-trun
ated 
ountsDaniel G. Kehler and Ransom A MyersDepartment of Biology,Dalhousie University,Halifax, Nova S
otia,CANADA B3H 4J1Abstra
tWe present the framework to model zero-trun
ated negative binomial and Poisson data viageneralized linear mixed models. Zero-trun
ated data appear in a variety of applied 
ontexts,in
luding situations with large data sets where having a rapid estimation pro
edure is useful.Generalized linear models are a natural analysis tool for su
h problems, and the use of ran-dom effe
ts a useful tool for modeling unoberservable heterogeneity. Using by
at
h data fromthe U.S. pelagi
 longline �shery, we demonstrate the appli
ation of the GLM 
ontext for thetrun
ated negative binomial and Poisson distributions. We illustrate how to over
ome severalpotential pitfalls, in
luding the need for an approximate method for 
onverting trun
ated into
orresponding untrun
ated �tted values.Introdu
tionTrun
ated observations are routinely en
ountered in applied 
ontexts su
h as e
onomi
sand biology, and often it is the zeros that are missing. For example, only non-zero litter sizesin animal breeding experiments are observed (Foulley et al. 1987), or in on-site sampling ofa re
reational a
tivity (e.g. sport �shing), data is only re
orded on those observed engaged inthe a
tivity. A third example, and one we will develop further, is in re
ording the by
at
h of a�shing operation. Commonly, only presen
e of an organism in a net, or on a line, is re
orded,and thus there is no way to distinguish between zeros and missing values. This be
omes 
riti
alin the evaluation of a temporal trend if the ratio of missing values to zeros has also 
hangedover time.Given the ubiquity of zero-trun
ated data, there is need for simple and general analysis toolsfor inferen
e. The obvious 
hoi
e for modeling trun
ated data is to use trun
ated distributions(Tobin 1958; Grogger and Carson 1991). Several authors have dis
ussed the inherent biases inusing non-trun
ated distributions to model trun
ated data (Creel and Loomis 1990). Inferen
e,however, is often not 
on�ned to the trun
ated distributions, but to parameters of the distribu-tions that in
lude the unre
orded values. Dire
t maximization of the likelihood using a gradient1



sear
h algorithm (e.g. Newton-Raphson (Terza 1985)) or quasi-likelihood methods (Groggerand Carson 1991), have been proposed to obtain 
onsistent parameter estimates from trun
ateddata. These methods have been in
orporated into two spe
ialized statisti
al software pa
kages,GAUSS (Apte
h Systems 1989) and LIMDEP (E
onometri
 Software In
. 2003). Severalauthors have noted that for the trun
ated negative binomial (and its spe
ial 
ase, the trun
atedPoisson), generalized linear models (GLMs (M
Cullagh and Nelder 1989)) and the iterativelyreweighted least squares (IRLS) algorithm 
an also be used. There is a real advantage to usinga GLM framework for the analysis of trun
ated 
ount data. The framework is widely used as itis a

essible to a broad range of users familiar with linear models, and is a standard feature ofstatisti
al analysis software.In this paper, we show how GLMs 
an be used as a fast and reliable framework for theanalysis of trun
ated 
ount data. We extend the GLM analysis by in
luding random effe
ts toa

ount for unobservable variabilty that would otherwise result in violations of the expe
tedvarian
e.Trun
ated 
ount distributionsEarlier work has proven the usefulness of Poisson and negative binomial regression models(e.g. Lawton 1987). Modeling trun
ated 
ount data in a similar fashion is possible, as boththe trun
ated Poisson and negative binomial distribution (with known s
ale paramter) are one-parameter exponential distribution families. For a dis
retely distributed random variable, Y , thezero-trun
ated distribution is of the formP(Yt = yt) = P(Y = yt)1�P(Y = 0) for yt = 1;2;3; � � �(1)The Poisson is the most 
ommonly used distribution to model 
ounts. If Z � Pois(µ), the zero-trun
ated Poisson distribution isfZt(zt ;µ) = µzte�µzt!(1� e�µ) for zt = 1;2;3; :::;with the �rst two momentsE[Zt ℄ = µ1� e�µ ; V (Zt) = µ+µ21� e�µ �� µ1� e�µ�2:We 
onsider the negative binomial as arising from a gammamixture of Poisson distributions.If the distribution of the unobserved random variable, Z, is gamma with mean 1 and varian
e1=q, and the distribution of Y j Z is Poisson with mean µZ, then the marginal distribution of Y2



is fY (y;q;µ) = G(q+ y)G(q)y! µyqq(µ+q)q+y ; for yt = 0;1;2; :::(2)and the zero-trun
ated distribution isfYt (yt ;q;µ) = G(q+ yt)G(q)yt! µytqq(µ+q)q+yt 11�� qq+µ�q! for yt = 1;2;3; :::(3)with mean and varian
e given byE[Yt ℄ = E[Y℄1�P(Y= 0) = µ1�� qq+µ�q = µt(4) V (Yt) = µ+ µ2q +µ21�� qq+µ�q � µ1�� qq+µ�q!2(5)The Poisson distribution is obtained from the negative binomial by allowing q! ¥.The trun
ated Poisson distribution 
an be easily rewritten in exponential form, as 
an thenegative binomial, if q is treated as �xed.Spe
ifying the GLMThe use of a GLM requires spe
ifying a link, that des
ribes the relationship betwen theobservation s
ale and the linear predi
tor (h) s
ale, and a varian
e fun
tion. The varian
efun
tions arise naturally from the distributions above, but leeway exists in the 
hoi
e of thelink fun
tion. The 
anoni
al link for the zero-trun
ated negative binomial, log� µµ+q� and zero-trun
ated Poisson, log(µ), are both expressed in terms of the untrun
atedmeans. This introdu
esa problem sin
e the �tting algortithm, IRLS, involves minimization of(yt�µt) ¶h¶µt(6)where yt is the trun
ated observation, h the linear predi
tor and µt the 
onditional expe
tationof Yt . It is 
lear that the deviations between the trun
ated data and the trun
ated mean are beingminimized. Thus, the link fun
tion need to be parameterized in terms of the trun
ated means.We suggest the link log(µt �1) as an obvious 
hoi
e, as this maintains the multipli
ative errorstru
ture, and ensures the proper range for the trun
ated means (1� µT � ¥).A se
ond problem appears, however, sin
e the varian
e fun
tions are parameterized in terms3



of the untrun
ated means. For the Poisson, the fun
tional relationship between the trun
atedand untrun
ated means is µt = µ1� e�µ ;(7)whi
h has no analyti
al solution. For the negative binomial, the fun
tional relationship betweenthe trun
ated and untrun
ated means isµt = µ1�� qq+µ�q ;(8)and has no expli
it solution ex
ept when q =1, and the relationship simpli�es to µt = µ+ 1.Thus, a numeri
al approximation is needed. On
e this obs
ta
le is surmounted, estimationpro
eeds qui
kly using IRLS. Figure 1 gives the transformation for the Poison and negativebinomial distributions.
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Figure 1: The transformation between the trun
ated and untrun
ated mean is shown for the negative binomial(a) and Poisson (b) distributions. For the negative binomial distribution, the transformation is shown for differentvalues of the q parameter. Remember that the transformation is µt = µ=(1�� qq+µ�q). For the Poisson distribution,the transformation is µt = µ=(1� e�µ), and is well approximated by the negative binomial transformation withlarger q values.Estimating qNote that although q is �xed in order for the negative binomial to be usable in the GLM 
on-text, in pra
ti
e, q must be estimated. We follow the advi
e of Venables and Ripley (1999) anduse an iterative approa
h, alternating �xing q and the �tted means from the GLM. Alternately,a likelihood pro�le for q 
an be 
onstru
ted.Appendix A 
ontains examples of 
ode for S-Plus and SAS to implement both trun
atedPoisson and negative binmomial GLMs. 5



Inferen
e on the untrun
ated s
aleAlthough parameter estimates are easily obtained using the IRLS algorithm implementedin 
ommon statisti
al pa
kages (e.g. Splus, SAS, SYSTAT, SPSS), the inferen
es drawn fromthese estimates only apply to the trun
ated s
ale, or more spe
i�
ally, the log(µt � 1) s
ale.While this may be adequate for model building, many appli
ations will require inferen
es tobe drawn on the original, untrun
ated s
ale (µ s
ale). What is needed is a way to translate theparameter estimates from the log(µt�1) s
ale to the µ s
ale. This 
an be done fairly easily for
ontinuous 
ovariates, by remembering that parameters des
ribe rates and by use of the 
hainrule for differentiation. For example, in the 
ase of analyzing 
ounts over time (t), interestfo
uses on the rate of 
hange: ¶µ¶t , or on the log s
ale: ¶ log(µ)¶t . The quantity estimated in thetrun
ated GLM is ¶ log(µt�1)¶t . The relationship between these quantities 
an be written as :¶ log(µ)¶t = �¶ log(µt�1)¶t �� ¶ log(µ)¶ log(µt)��¶ log(µt)¶µt �� ¶µt¶ log(µt�1)�(9)The latter three bra
keted term represent a 
orre
tion fa
tor that allows a parameter estimate onthe trun
ated s
ale to be translated to an estimate on the original s
ale. Figure 2 gives the rel-evant 
orre
tion fa
tor for the zero-trun
ated Poisson and negative binomial distributions. Theremaining step is to 
hoose the appropriate value for µt and µ. The use of the mean of the trun-
ated data is a sensible 
hoi
e for µt , and the transformation in Figure 1 gives the 
orrespondingµ value. Appendix B gives the 
orre
tion fa
tor and its derivation for the Poisson and negativebinomial distributions.

6



0 10 20 30 40

0.85

0.90

0.95

1.00

C
or

re
ct

io
n 

fa
ct

or

Truncated mean

Figure 2: Shown is the 
orre
tion fa
tor ¶ logµT¶ logµ , for the Poisson (a) and negative binomial (b) distributions. Inthe 
ase of the negative binomial, a 
ontour plot is given, showing the 
orre
tion fa
tor for different values of µand q.Example - by
at
h in the U.S. pelagi
 longline �sheryPelagi
 longlines are a free-�oating �shing gear used in open waters to target high valuedlarge pelagi
 spe
ies, like sword�sh and tunas. In addition to targeted spe
ies, over xxx spe
iesare hooked in
identally, and are 
onsidered by
at
h. There is 
onsiderable interest in elu
idat-ing any temporal trend in the 
at
h rates for many of these spe
ies. Sin
e 1986, U.S. longlineboats have been federally mandated to keep logbooks of �shing a
tivity. Detailed informationabout the positive 
at
h for ea
h longline set is thus available (214234 sets between 1986 and2000), but absen
e of 
at
h is not re
orded, thus 
onfounding missing values with true zeros.As the data are self-reported their reliability may be questionable, parti
ularly for infrequently
aught spe
ies. One option is to treat all non-zero entries as zeros, by either analyzing the7



positive and zero 
omponents separately (delta-lognormal method (Lo, Ja
obsen, and Squire1992)), or by a

ounting for an unexpe
tedly large proportion of zeros (zero-in�ated Poisson(Lambert 1992)). However, if the reporting rate has 
hanged over time, obtaining a

urate tem-poral trends in 
at
h rates is problemati
. A se
ond option is to restri
t attention to the positivesand treat them as a zero-trun
ated sample. This approa
h is reasonable if there is little likeli-hood of the reporting rate of the positive 
at
hes 
hanging over time. This is arguably a morerealisti
 assumption in many 
ases.As means of illustration, we present results of temporal trends in by
at
h for hammerheadsharks using both the Poisson and negative binomial distributions where 1) all non-positives areinferred to be zeros, 2) only positive values are used. We restri
t our analysis to one reportingarea and one season for simpli
ity.
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Figure 3: The data from the US logbook programs are shown for one set of spe
ies: hammerhead sharks in onereporting area (5) and one season (4). In (a) yearly box plots of the 
at
h rate are presented for all sets (n= 9683).In (b), the yearly mean 
at
h rate is shown. In (
) the proportion of sets where no hammerheads were re
ored areplotted againt year. In (d) the mean 
at
h rate of all non-zero sets (n= 793) is plotted against year.Figure 3 displays the data for the examples. There appears to be a de
lining trend in themean 
at
h rate, but at the same time an in
rease in the proportion of zero sets. Hen
e, it maybe dif�
ult to a

urately estimate the trend in 
at
h rate, if the rate at whi
h positive 
at
hesare reported is de
reasing (The in
reasing proportion of zero sets). To test the methods outlinedabove, we �t a series of models to the example data set. The results are presented in Table 1.
9



Table 1. The parameter estimates of the trend over time in the 
at
h rate per set fromvarious model �ts to the hammerhead shark longline data. The model in
luded year as a
ontinuous variable, two additional variables (sea surfa
e temperature and the presen
e oflightsti
ks), and the number of hooks per set was used as an offset.Model Parameter estimate SEPoisson -0.375 0.0050Trun
ated Poisson (glm) -0.208 0.034Trun
ated Poisson (glm - 
orre
ted) -0.183 0.030Trun
ated Poisson (ml) -0.191Negative binomial -0.3 0.034Trun
ated negative binomial (glm) -0.208 0.031Trun
ated negative binomial (glm - 
orre
ted) -0.246 0.036Trun
ated negative binomial (ml) -0.241It is 
lear that the inferen
es from the entire data set (in
luding zero sets) and the zero-trun
ated data set are quite different. The trend in the proportion of zero sets is not the sameas the trend of the positive 
at
hes. The 
orre
ted estimates mat
h the maximum likelihoodestimates quite 
losely.1 A
knowledgementsMany thanks to E. Susko, A. Edwards, J. Baum, and W. Blan
hard for ideas and helpful
omments on the manus
ript, and to NSERCC, and the Killam Foundation for funding to DGKand RAM.
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Appendix B - Derivation of the 
orre
tion fa
tor for translat-ing parameter estimates on the trun
ated s
ale to the originals
aleWe know (from the trun
ated glm slope estimate of the year effe
t)¶ logµT �1¶tThe (�1) part 
omes from the link fun
tion we are using, (log(µt�1) =Xb) as this link ensuresthat all values are � 1 on the h s
ale. what we really want want to know is how the 
at
hes are
hanging on the untrun
ated s
ale: ¶ logµ¶tTo obtain this quantity, we use several appli
ations of the 
hain rule.¶ log(µ)¶t = �¶ log(µt�1)¶t �� ¶µ¶ log(µt�1)�= �¶ log(µt�1)¶t �� ¶ log(µ)¶ log(µt)�� ¶ log(µt)¶ log(µt�1)�= �¶ log(µt�1)¶t ��¶ log( mu)¶ log(µt) ��¶ log(µt)¶µt �� ¶µt¶ log(µt�1)�(10)The �rst term is estimated by the GLM on the trun
ated s
ale. The se
ond term 
an be derivedby knowing the relationship between the trun
ated and untrun
ated means, whi
h we obtainfrom the appropriate distribution.� Note 1: we know µt = f (µ), but we need the relationship between the log of the trun
atedand untrun
ated means log(µt) = f (log(µ)). This is easily obtained by taking logs of bothsides of the equation.� Note 2: we know log(µt) = f (log(µ)) and hen
e we 
an obtain the derivative ¶ log(µt )¶ log(µ) .However, what we need is a
tually the inverse: ¶ log(µ)¶ log(µt ) . This 
an be obtained by literallytaken the inverse of the �rst derivative.
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The remaining terms are easily obtained.¶ log(µt)¶µt = 1µtand ¶µt¶ log(µt�1) = 1=¶ log(µt�1)¶µt= 1= 1µt�1= µt�1Negative binomialFor the negative binomial distribtuion, the relationship between the trun
ated and untrun-
ated means is: µT = µ1�� qq+µ�qand on the log s
ale: log(µt) = log(µ)� log�1�� qq+µ�q�The derivative of log(µT ) with respe
t to log(µ) is1�� µqq+µ�� qq+µ�q 11�� qq+µ�qThe 
orre
tion fa
tor is thus:�µt�1µt �h1�� µqq+µ�� qq+µ�q 11�� qq+µ�qi�1PoissonFor the Poisson distribution, the relationship between the trun
ated and untrun
ated meansis given by: µt = µ1� e�µand on the log s
ale: log(µt) = log(µ)� log(1� e�µ)12



Taking the derivative with respe
t to logµ gives¶ log(µt)¶ log(µ) = 1� µe�µ1� e�µwhi
h simpli�es to ¶ log(µt)¶ log(µ) = 1� µeµ�1The 
orre
tion fa
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