
Generalized linear models for zero-trunated ountsDaniel G. Kehler and Ransom A MyersDepartment of Biology,Dalhousie University,Halifax, Nova Sotia,CANADA B3H 4J1AbstratWe present the framework to model zero-trunated negative binomial and Poisson data viageneralized linear mixed models. Zero-trunated data appear in a variety of applied ontexts,inluding situations with large data sets where having a rapid estimation proedure is useful.Generalized linear models are a natural analysis tool for suh problems, and the use of ran-dom effets a useful tool for modeling unoberservable heterogeneity. Using byath data fromthe U.S. pelagi longline �shery, we demonstrate the appliation of the GLM ontext for thetrunated negative binomial and Poisson distributions. We illustrate how to overome severalpotential pitfalls, inluding the need for an approximate method for onverting trunated intoorresponding untrunated �tted values.IntrodutionTrunated observations are routinely enountered in applied ontexts suh as eonomisand biology, and often it is the zeros that are missing. For example, only non-zero litter sizesin animal breeding experiments are observed (Foulley et al. 1987), or in on-site sampling ofa rereational ativity (e.g. sport �shing), data is only reorded on those observed engaged inthe ativity. A third example, and one we will develop further, is in reording the byath of a�shing operation. Commonly, only presene of an organism in a net, or on a line, is reorded,and thus there is no way to distinguish between zeros and missing values. This beomes ritialin the evaluation of a temporal trend if the ratio of missing values to zeros has also hangedover time.Given the ubiquity of zero-trunated data, there is need for simple and general analysis toolsfor inferene. The obvious hoie for modeling trunated data is to use trunated distributions(Tobin 1958; Grogger and Carson 1991). Several authors have disussed the inherent biases inusing non-trunated distributions to model trunated data (Creel and Loomis 1990). Inferene,however, is often not on�ned to the trunated distributions, but to parameters of the distribu-tions that inlude the unreorded values. Diret maximization of the likelihood using a gradient1



searh algorithm (e.g. Newton-Raphson (Terza 1985)) or quasi-likelihood methods (Groggerand Carson 1991), have been proposed to obtain onsistent parameter estimates from trunateddata. These methods have been inorporated into two speialized statistial software pakages,GAUSS (Apteh Systems 1989) and LIMDEP (Eonometri Software In. 2003). Severalauthors have noted that for the trunated negative binomial (and its speial ase, the trunatedPoisson), generalized linear models (GLMs (MCullagh and Nelder 1989)) and the iterativelyreweighted least squares (IRLS) algorithm an also be used. There is a real advantage to usinga GLM framework for the analysis of trunated ount data. The framework is widely used as itis aessible to a broad range of users familiar with linear models, and is a standard feature ofstatistial analysis software.In this paper, we show how GLMs an be used as a fast and reliable framework for theanalysis of trunated ount data. We extend the GLM analysis by inluding random effets toaount for unobservable variabilty that would otherwise result in violations of the expetedvariane.Trunated ount distributionsEarlier work has proven the usefulness of Poisson and negative binomial regression models(e.g. Lawton 1987). Modeling trunated ount data in a similar fashion is possible, as boththe trunated Poisson and negative binomial distribution (with known sale paramter) are one-parameter exponential distribution families. For a disretely distributed random variable, Y , thezero-trunated distribution is of the formP(Yt = yt) = P(Y = yt)1�P(Y = 0) for yt = 1;2;3; � � �(1)The Poisson is the most ommonly used distribution to model ounts. If Z � Pois(µ), the zero-trunated Poisson distribution isfZt(zt ;µ) = µzte�µzt!(1� e�µ) for zt = 1;2;3; :::;with the �rst two momentsE[Zt ℄ = µ1� e�µ ; V (Zt) = µ+µ21� e�µ �� µ1� e�µ�2:We onsider the negative binomial as arising from a gammamixture of Poisson distributions.If the distribution of the unobserved random variable, Z, is gamma with mean 1 and variane1=q, and the distribution of Y j Z is Poisson with mean µZ, then the marginal distribution of Y2



is fY (y;q;µ) = G(q+ y)G(q)y! µyqq(µ+q)q+y ; for yt = 0;1;2; :::(2)and the zero-trunated distribution isfYt (yt ;q;µ) = G(q+ yt)G(q)yt! µytqq(µ+q)q+yt 11�� qq+µ�q! for yt = 1;2;3; :::(3)with mean and variane given byE[Yt ℄ = E[Y℄1�P(Y= 0) = µ1�� qq+µ�q = µt(4) V (Yt) = µ+ µ2q +µ21�� qq+µ�q � µ1�� qq+µ�q!2(5)The Poisson distribution is obtained from the negative binomial by allowing q! ¥.The trunated Poisson distribution an be easily rewritten in exponential form, as an thenegative binomial, if q is treated as �xed.Speifying the GLMThe use of a GLM requires speifying a link, that desribes the relationship betwen theobservation sale and the linear preditor (h) sale, and a variane funtion. The varianefuntions arise naturally from the distributions above, but leeway exists in the hoie of thelink funtion. The anonial link for the zero-trunated negative binomial, log� µµ+q� and zero-trunated Poisson, log(µ), are both expressed in terms of the untrunatedmeans. This introduesa problem sine the �tting algortithm, IRLS, involves minimization of(yt�µt) ¶h¶µt(6)where yt is the trunated observation, h the linear preditor and µt the onditional expetationof Yt . It is lear that the deviations between the trunated data and the trunated mean are beingminimized. Thus, the link funtion need to be parameterized in terms of the trunated means.We suggest the link log(µt �1) as an obvious hoie, as this maintains the multipliative errorstruture, and ensures the proper range for the trunated means (1� µT � ¥).A seond problem appears, however, sine the variane funtions are parameterized in terms3



of the untrunated means. For the Poisson, the funtional relationship between the trunatedand untrunated means is µt = µ1� e�µ ;(7)whih has no analytial solution. For the negative binomial, the funtional relationship betweenthe trunated and untrunated means isµt = µ1�� qq+µ�q ;(8)and has no expliit solution exept when q =1, and the relationship simpli�es to µt = µ+ 1.Thus, a numerial approximation is needed. One this obstale is surmounted, estimationproeeds quikly using IRLS. Figure 1 gives the transformation for the Poison and negativebinomial distributions.
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Figure 1: The transformation between the trunated and untrunated mean is shown for the negative binomial(a) and Poisson (b) distributions. For the negative binomial distribution, the transformation is shown for differentvalues of the q parameter. Remember that the transformation is µt = µ=(1�� qq+µ�q). For the Poisson distribution,the transformation is µt = µ=(1� e�µ), and is well approximated by the negative binomial transformation withlarger q values.Estimating qNote that although q is �xed in order for the negative binomial to be usable in the GLM on-text, in pratie, q must be estimated. We follow the advie of Venables and Ripley (1999) anduse an iterative approah, alternating �xing q and the �tted means from the GLM. Alternately,a likelihood pro�le for q an be onstruted.Appendix A ontains examples of ode for S-Plus and SAS to implement both trunatedPoisson and negative binmomial GLMs. 5



Inferene on the untrunated saleAlthough parameter estimates are easily obtained using the IRLS algorithm implementedin ommon statistial pakages (e.g. Splus, SAS, SYSTAT, SPSS), the inferenes drawn fromthese estimates only apply to the trunated sale, or more spei�ally, the log(µt � 1) sale.While this may be adequate for model building, many appliations will require inferenes tobe drawn on the original, untrunated sale (µ sale). What is needed is a way to translate theparameter estimates from the log(µt�1) sale to the µ sale. This an be done fairly easily forontinuous ovariates, by remembering that parameters desribe rates and by use of the hainrule for differentiation. For example, in the ase of analyzing ounts over time (t), interestfouses on the rate of hange: ¶µ¶t , or on the log sale: ¶ log(µ)¶t . The quantity estimated in thetrunated GLM is ¶ log(µt�1)¶t . The relationship between these quantities an be written as :¶ log(µ)¶t = �¶ log(µt�1)¶t �� ¶ log(µ)¶ log(µt)��¶ log(µt)¶µt �� ¶µt¶ log(µt�1)�(9)The latter three braketed term represent a orretion fator that allows a parameter estimate onthe trunated sale to be translated to an estimate on the original sale. Figure 2 gives the rel-evant orretion fator for the zero-trunated Poisson and negative binomial distributions. Theremaining step is to hoose the appropriate value for µt and µ. The use of the mean of the trun-ated data is a sensible hoie for µt , and the transformation in Figure 1 gives the orrespondingµ value. Appendix B gives the orretion fator and its derivation for the Poisson and negativebinomial distributions.
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Figure 2: Shown is the orretion fator ¶ logµT¶ logµ , for the Poisson (a) and negative binomial (b) distributions. Inthe ase of the negative binomial, a ontour plot is given, showing the orretion fator for different values of µand q.Example - byath in the U.S. pelagi longline �sheryPelagi longlines are a free-�oating �shing gear used in open waters to target high valuedlarge pelagi speies, like sword�sh and tunas. In addition to targeted speies, over xxx speiesare hooked inidentally, and are onsidered byath. There is onsiderable interest in eluidat-ing any temporal trend in the ath rates for many of these speies. Sine 1986, U.S. longlineboats have been federally mandated to keep logbooks of �shing ativity. Detailed informationabout the positive ath for eah longline set is thus available (214234 sets between 1986 and2000), but absene of ath is not reorded, thus onfounding missing values with true zeros.As the data are self-reported their reliability may be questionable, partiularly for infrequentlyaught speies. One option is to treat all non-zero entries as zeros, by either analyzing the7



positive and zero omponents separately (delta-lognormal method (Lo, Jaobsen, and Squire1992)), or by aounting for an unexpetedly large proportion of zeros (zero-in�ated Poisson(Lambert 1992)). However, if the reporting rate has hanged over time, obtaining aurate tem-poral trends in ath rates is problemati. A seond option is to restrit attention to the positivesand treat them as a zero-trunated sample. This approah is reasonable if there is little likeli-hood of the reporting rate of the positive athes hanging over time. This is arguably a morerealisti assumption in many ases.As means of illustration, we present results of temporal trends in byath for hammerheadsharks using both the Poisson and negative binomial distributions where 1) all non-positives areinferred to be zeros, 2) only positive values are used. We restrit our analysis to one reportingarea and one season for simpliity.
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Figure 3: The data from the US logbook programs are shown for one set of speies: hammerhead sharks in onereporting area (5) and one season (4). In (a) yearly box plots of the ath rate are presented for all sets (n= 9683).In (b), the yearly mean ath rate is shown. In () the proportion of sets where no hammerheads were reored areplotted againt year. In (d) the mean ath rate of all non-zero sets (n= 793) is plotted against year.Figure 3 displays the data for the examples. There appears to be a delining trend in themean ath rate, but at the same time an inrease in the proportion of zero sets. Hene, it maybe dif�ult to aurately estimate the trend in ath rate, if the rate at whih positive athesare reported is dereasing (The inreasing proportion of zero sets). To test the methods outlinedabove, we �t a series of models to the example data set. The results are presented in Table 1.
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Table 1. The parameter estimates of the trend over time in the ath rate per set fromvarious model �ts to the hammerhead shark longline data. The model inluded year as aontinuous variable, two additional variables (sea surfae temperature and the presene oflightstiks), and the number of hooks per set was used as an offset.Model Parameter estimate SEPoisson -0.375 0.0050Trunated Poisson (glm) -0.208 0.034Trunated Poisson (glm - orreted) -0.183 0.030Trunated Poisson (ml) -0.191Negative binomial -0.3 0.034Trunated negative binomial (glm) -0.208 0.031Trunated negative binomial (glm - orreted) -0.246 0.036Trunated negative binomial (ml) -0.241It is lear that the inferenes from the entire data set (inluding zero sets) and the zero-trunated data set are quite different. The trend in the proportion of zero sets is not the sameas the trend of the positive athes. The orreted estimates math the maximum likelihoodestimates quite losely.1 AknowledgementsMany thanks to E. Susko, A. Edwards, J. Baum, and W. Blanhard for ideas and helpfulomments on the manusript, and to NSERCC, and the Killam Foundation for funding to DGKand RAM.
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Appendix B - Derivation of the orretion fator for translat-ing parameter estimates on the trunated sale to the originalsaleWe know (from the trunated glm slope estimate of the year effet)¶ logµT �1¶tThe (�1) part omes from the link funtion we are using, (log(µt�1) =Xb) as this link ensuresthat all values are � 1 on the h sale. what we really want want to know is how the athes arehanging on the untrunated sale: ¶ logµ¶tTo obtain this quantity, we use several appliations of the hain rule.¶ log(µ)¶t = �¶ log(µt�1)¶t �� ¶µ¶ log(µt�1)�= �¶ log(µt�1)¶t �� ¶ log(µ)¶ log(µt)�� ¶ log(µt)¶ log(µt�1)�= �¶ log(µt�1)¶t ��¶ log( mu)¶ log(µt) ��¶ log(µt)¶µt �� ¶µt¶ log(µt�1)�(10)The �rst term is estimated by the GLM on the trunated sale. The seond term an be derivedby knowing the relationship between the trunated and untrunated means, whih we obtainfrom the appropriate distribution.� Note 1: we know µt = f (µ), but we need the relationship between the log of the trunatedand untrunated means log(µt) = f (log(µ)). This is easily obtained by taking logs of bothsides of the equation.� Note 2: we know log(µt) = f (log(µ)) and hene we an obtain the derivative ¶ log(µt )¶ log(µ) .However, what we need is atually the inverse: ¶ log(µ)¶ log(µt ) . This an be obtained by literallytaken the inverse of the �rst derivative.
11



The remaining terms are easily obtained.¶ log(µt)¶µt = 1µtand ¶µt¶ log(µt�1) = 1=¶ log(µt�1)¶µt= 1= 1µt�1= µt�1Negative binomialFor the negative binomial distribtuion, the relationship between the trunated and untrun-ated means is: µT = µ1�� qq+µ�qand on the log sale: log(µt) = log(µ)� log�1�� qq+µ�q�The derivative of log(µT ) with respet to log(µ) is1�� µqq+µ�� qq+µ�q 11�� qq+µ�qThe orretion fator is thus:�µt�1µt �h1�� µqq+µ�� qq+µ�q 11�� qq+µ�qi�1PoissonFor the Poisson distribution, the relationship between the trunated and untrunated meansis given by: µt = µ1� e�µand on the log sale: log(µt) = log(µ)� log(1� e�µ)12



Taking the derivative with respet to logµ gives¶ log(µt)¶ log(µ) = 1� µe�µ1� e�µwhih simpli�es to ¶ log(µt)¶ log(µ) = 1� µeµ�1The orretion fator is thus: �µt�1µt �h1� µeµ�1i�1(11)ReferenesApteh Systems 1989. COUNT module referene list. GAUSS Newsletter 5: 4�6.Creel, M. D., and Loomis, J. B. 1990. Theoretial and empirial advantages of trunatedount data estimators for analysis of deer hunting in alifornia. Amerian Journal ofAgriultural Eonomis 72: 434�461.Eonometri Software In. 2003. LIMDEP Version 8.0. Eonometri Software, Plainview,New York.Foulley, J. L., Gianola., D., and Im, S. 1987. Geneti evaluation of traits distributed asPoisson-binomial with referene to reprodutive haraters. Theor. Appl. Genet. 73:870�877.Grogger, J., and Carson, R. 1991. Models for trunated ounts. J. of Appl. Eon. 6: 225�238.Lambert, D. 1992. Zero-in�ated Poisson regression, with an appliation to defetsin manu-faturing. Tehnometris 34: 1�14.Lo, N. C., Jaobsen, L. D., and Squire, J. L. 1992. Indies of relative abundane for �shspotter data based on delta-lognormal models. Can. J. Fish. Aquat. Si. 49: 2515�2526.MCullagh, P., and Nelder, J. A. 1989. Generalized Linear Models. Monographs on Statistisand Applied Probability. Chapman & Hall, London.Terza, J. V. 1985. A Tobit-style estimator for the ensored Poisson regression model. Eon.Lett. 18: 361�365.Tobin, J. 1958. Estimation of relationships for limited dependent variables. Eonometria 26:24�36. 13



Venables, W. N. W. N., and Ripley, B. D. 1999. Modern applied statistis with S-PLUS:Volume 1: Data Analysis (Third ed.). Statistis and omputing. From the Web site: �Thebook is also useful with R, a freely-available open-soure statistial system `not unlikeS'. We have tried where possible to use ode that works in all versions of S-PLUS and inR.�.
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