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Abstract

We present the framework to model zero-truncated negative binomial and Poisson data via
generalized linear mixed models. Zero-truncated data appear in a variety of applied contexts,
including situations with large data sets where having a rapid estimation procedure is useful.
Generalized linear models are a natural analysis tool for such problems, and the use of ran-
dom effects a useful tool for modeling unoberservable heterogeneity. Using bycatch data from
the U.S. pelagic longline fishery, we demonstrate the application of the GLM context for the
truncated negative binomial and Poisson distributions. We illustrate how to overcome several
potential pitfalls, including the need for an approximate method for converting truncated into

corresponding untruncated fitted values.

Introduction

Truncated observations are routinely encountered in applied contexts such as economics
and biology, and often it is the zeros that are missing. For example, only non-zero litter sizes
in animal breeding experiments are observed (Foulley et al. 1987), or in on-site sampling of
a recreational activity (e.g. sport fishing), data is only recorded on those observed engaged in
the activity. A third example, and one we will develop further, is in recording the bycatch of a
fishing operation. Commonly, only presence of an organism in a net, or on a line, is recorded,
and thus there is no way to distinguish between zeros and missing values. This becomes critical
in the evaluation of a temporal trend if the ratio of missing values to zeros has also changed
over time.

Given the ubiquity of zero-truncated data, there is need for simple and general analysis tools
for inference. The obvious choice for modeling truncated data is to use truncated distributions
(Tobin 1958; Grogger and Carson 1991). Several authors have discussed the inherent biases in
using non-truncated distributions to model truncated data (Creel and Loomis 1990). Inference,
however, is often not confined to the truncated distributions, but to parameters of the distribu-

tions that include the unrecorded values. Direct maximization of the likelihood using a gradient



search algorithm (e.g. Newton-Raphson (Terza 1985)) or quasi-likelihood methods (Grogger
and Carson 1991), have been proposed to obtain consistent parameter estimates from truncated
data. These methods have been incorporated into two specialized statistical software packages,
GAUSS (Aptech Systems 1989) and LIMDEP (Econometric Software Inc.  2003). Several
authors have noted that for the truncated negative binomial (and its special case, the truncated
Poisson), generalized linear models (GLMs (McCullagh and Nelder 1989)) and the iteratively
reweighted least squares (IRLS) algorithm can also be used. There is a real advantage to using
a GLM framework for the analysis of truncated count data. The framework is widely used as it
is accessible to a broad range of users familiar with linear models, and is a standard feature of
statistical analysis software.

In this paper, we show how GLMs can be used as a fast and reliable framework for the
analysis of truncated count data. We extend the GLM analysis by including random effects to
account for unobservable variabilty that would otherwise result in violations of the expected

variance.

Truncated count distributions

Earlier work has proven the usefulness of Poisson and negative binomial regression models
(e.g. Lawton 1987). Modeling truncated count data in a similar fashion is possible, as both
the truncated Poisson and negative binomial distribution (with known scale paramter) are one-
parameter exponential distribution families. For a discretely distributed random variable, Y, the
zero-truncated distribution is of the form
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The Poisson is the most commonly used distribution to model counts. If Z ~ Pois(u), the zero-

truncated Poisson distribution is
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We consider the negative binomial as arising from a gamma mixture of Poisson distributions.
If the distribution of the unobserved random variable, Z, is gamma with mean 1 and variance
1/6, and the distribution of ¥ | Z is Poisson with mean uZ, then the marginal distribution of ¥
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r0+y, V9o 1
@ ey = SOt _n ( :

for =1,2,3,...
T@)! 0"\, (o 9) T
0+u

with mean and variance given by

_ ElY] u _
4) E[Y,] = I_P(YZO)—]_(LY)_#:
0-+u

) = “-I'%Jr“z_( H )2
5) V(%) ) ()

0+u 0+u

The Poisson distribution is obtained from the negative binomial by allowing 6 — oo.
The truncated Poisson distribution can be easily rewritten in exponential form, as can the
negative binomial, if 0 is treated as fixed.

Specifying the GLM

The use of a GLM requires specifying a link, that describes the relationship betwen the
observation scale and the linear predictor (1) scale, and a variance function. The variance
functions arise naturally from the distributions above, but leeway exists in the choice of the
link function. The canonical link for the zero-truncated negative binomial, log (ﬁ) and zero-
truncated Poisson, log(u), are both expressed in terms of the untruncated means. This introduces
a problem since the fitting algortithm, IRLS, involves minimization of
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where y, is the truncated observation, 1 the linear predictor and g, the conditional expectation
of ¥;. It is clear that the deviations between the truncated data and the truncated mean are being
minimized. Thus, the link function need to be parameterized in terms of the truncated means.
We suggest the link log(y; — 1) as an obvious choice, as this maintains the multiplicative error
structure, and ensures the proper range for the truncated means (1 < ur < o).

A second problem appears, however, since the variance functions are parameterized in terms



of the untruncated means. For the Poisson, the functional relationship between the truncated

and untruncated means is

(7 M =

which has no analytical solution. For the negative binomial, the functional relationship between
the truncated and untruncated means is
u
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and has no explicit solution except when 6 =1, and the relationship simplifies to u, = u+ 1.
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Thus, a numerical approximation is needed. Once this obsctacle is surmounted, estimation
proceeds quickly using IRLS. Figure 1 gives the transformation for the Poison and negative

binomial distributions.



o0 4 a Fow
S -
3}

e
o ® A re
Q
S
C(\l* - N
>
p—
—
5 o
o - O

Truncated mean

Figure 1: The transformation between the truncated and untruncated mean is shown for the negative binomial
(a) and Poisson (b) distributions. For the negative binomial distribution, the transformation is shown for different

0
values of the 6 parameter. Remember that the transformation is yy = u/(1 — (%ﬂ) ). For the Poisson distribution,
the transformation is y; = u/(1 —e™*), and is well approximated by the negative binomial transformation with

larger 6 values.

Estimating 6

Note that although 0 is fixed in order for the negative binomial to be usable in the GLM con-
text, in practice, 8 must be estimated. We follow the advice of Venables and Ripley (1999) and
use an iterative approach, alternating fixing 0 and the fitted means from the GLM. Alternately,
a likelihood profile for 8 can be constructed.

Appendix A contains examples of code for S-Plus and SAS to implement both truncated

Poisson and negative binmomial GLMs.



Inference on the untruncated scale

Although parameter estimates are easily obtained using the IRLS algorithm implemented
in common statistical packages (e.g. Splus, SAS, SYSTAT, SPSS), the inferences drawn from
these estimates only apply to the truncated scale, or more specifically, the log(u, — 1) scale.
While this may be adequate for model building, many applications will require inferences to
be drawn on the original, untruncated scale (u scale). What is needed is a way to translate the
parameter estimates from the log(u, — 1) scale to the u scale. This can be done fairly easily for
continuous covariates, by remembering that parameters describe rates and by use of the chain
rule for differentiation. For example, in the case of analyzing counts over time (¢), interest

u dlog(u)

focuses on the rate of change: %—t, or on the log scale: —~. The quantity estimated in the

truncated GLM is %. The relationship between these quantities can be written as :
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The latter three bracketed term represent a correction factor that allows a parameter estimate on
the truncated scale to be translated to an estimate on the original scale. Figure 2 gives the rel-
evant correction factor for the zero-truncated Poisson and negative binomial distributions. The
remaining step is to choose the appropriate value for 1, and u. The use of the mean of the trun-
cated data is a sensible choice for y;, and the transformation in Figure 1 gives the corresponding
u value. Appendix B gives the correction factor and its derivation for the Poisson and negative

binomial distributions.
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Figure 2: Shown is the correction factor aal;’()%, for the Poisson (a) and negative binomial (b) distributions. In

the case of the negative binomial, a contour plot is given, showing the correction factor for different values of u
and 6.

Example - bycatch in the U.S. pelagic longline fishery

Pelagic longlines are a free-floating fishing gear used in open waters to target high valued
large pelagic species, like swordfish and tunas. In addition to targeted species, over Xxx species
are hooked incidentally, and are considered bycatch. There is considerable interest in elucidat-
ing any temporal trend in the catch rates for many of these species. Since 1986, U.S. longline
boats have been federally mandated to keep logbooks of fishing activity. Detailed information
about the positive catch for each longline set is thus available (214234 sets between 1986 and
2000), but absence of catch is not recorded, thus confounding missing values with true zeros.
As the data are self-reported their reliability may be questionable, particularly for infrequently

caught species. One option is to treat all non-zero entries as zeros, by either analyzing the



positive and zero components separately (delta-lognormal method (Lo, Jacobsen, and Squire
1992)), or by accounting for an unexpectedly large proportion of zeros (zero-inflated Poisson
(Lambert 1992)). However, if the reporting rate has changed over time, obtaining accurate tem-
poral trends in catch rates is problematic. A second option is to restrict attention to the positives
and treat them as a zero-truncated sample. This approach is reasonable if there is little likeli-
hood of the reporting rate of the positive catches changing over time. This is arguably a more
realistic assumption in many cases.

As means of illustration, we present results of temporal trends in bycatch for hammerhead
sharks using both the Poisson and negative binomial distributions where 1) all non-positives are
inferred to be zeros, 2) only positive values are used. We restrict our analysis to one reporting

area and one season for simplicity.
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Figure 3: The data from the US logbook programs are shown for one set of species: hammerhead sharks in one

reporting area (5) and one season (4). In (a) yearly box plots of the catch rate are presented for all sets (n = 9683).

In (b), the yearly mean catch rate is shown. In (c) the proportion of sets where no hammerheads were recored are

plotted againt year. In (d) the mean catch rate of all non-zero sets (n = 793) is plotted against year.

Figure 3 displays the data for the examples. There appears to be a declining trend in the

mean catch rate, but at the same time an increase in the proportion of zero sets. Hence, it may

be difficult to accurately estimate the trend in catch rate, if the rate at which positive catches

are reported is decreasing (The increasing proportion of zero sets). To test the methods outlined

above, we fit a series of models to the example data set. The results are presented in Table 1.



Table 1. The parameter estimates of the trend over time in the catch rate per set from

various model fits to the hammerhead shark longline data. The model included year as a

continuous variable, two additional variables (sea surface temperature and the presence of

lightsticks), and the number of hooks per set was used as an offset.

Model Parameter estimate SE
Poisson -0.375 0.0050
Truncated Poisson (glm) -0.208 0.034
Truncated Poisson (glm - corrected) -0.183 0.030
Truncated Poisson (ml) -0.191

Negative binomial -0.3 0.034
Truncated negative binomial (glm) -0.208 0.031
Truncated negative binomial (glm - corrected) -0.246 0.036
Truncated negative binomial (ml) -0.241

It is clear that the inferences from the entire data set (including zero sets) and the zero-

truncated data set are quite different. The trend in the proportion of zero sets is not the same

as the trend of the positive catches. The corrected estimates match the maximum likelihood

estimates quite closely.
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Appendix B - Derivation of the correction factor for translat-
ing parameter estimates on the truncated scale to the original

scale
We know (from the truncated glm slope estimate of the year effect)

alog,uT —1
ot

The (—1) part comes from the link function we are using, (log(y; — 1) = Xp) as this link ensures

that all values are > 1 on the 1 scale. what we really want want to know is how the catches are

changing on the untruncated scale:

dlogu
ot

To obtain this quantity, we use several applications of the chain rule.

dlog(n) (alog(yr—1)><a o )
log

ot ot (u—1)
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The first term is estimated by the GLLM on the truncated scale. The second term can be derived
by knowing the relationship between the truncated and untruncated means, which we obtain
from the appropriate distribution.

e Note 1: we know u, = f(u), but we need the relationship between the log of the truncated
and untruncated means log(y,) = f(log(u)). This is easily obtained by taking logs of both
sides of the equation.

dlog(u)
dlog(u) *

. This can be obtained by literally

e Note 2: we know log(u;) = f(log(u)) and hence we can obtain the derivative

dlog(u)
dlog(u)

However, what we need is actually the inverse:

taken the inverse of the first derivative.
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The remaining terms are easily obtained.
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Negative binomial

For the negative binomial distribtuion, the relationship between the truncated and untrun-

cated means is:
u
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and on the log scale:

The derivative of log(ur) with respect to log(u) is

() )

1= (%)

The correction factor is thus:

(-G 65) —al
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Poisson

For the Poisson distribution, the relationship between the truncated and untruncated means

is given by:

and on the log scale:
log(u) = log(u) —log(1—e™*)
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Taking the derivative with respect to logu gives

dlog(u) _  pe®

dlog(u) l—en

which simplifies to

dlog(uy) _
dlog(u) et — 1

The correction factor is thus:
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