Research Surveys

Why they are crucial?
How can they be better designed? How can they be better utilized?

Ransom A. Myers
Dalhousie University, Halifax, NS, Canada

Reason \#1 for Having Research Surveys

- Don't loose the pieces!

Are the Pleistocene extinctions going to be repeated in the ocean?

The extinction of large mammals and flightless birds coincided closely with the arrival of humans in North America, Madagascar, and New Zealand, and less decisively earlier in Australia. In Africa, where humans and animals evolved together for millions of years, the damage was less severe.

What has changed?

- 90% decline in numbers
- Approx. 50\% decline in size
- Large changes in species composition

Community Changes on Southern Grand Banks

Harrissons \& Southern dogsharks

Harrissons and Southern dogsharks in 1977 amounted at 18.5\% of total biomass in surveys off New South Wales.

30 years later they declined by a factor of about 300.

How long does it take to "rescue" an old survey?

- At least 2 years for a very good graduate student.
- Once all scientists and technicians are dead, then there is much greater uncertainty.

What is the half-life an old survey?

- about 10 years for a government surveys
- about 10 months for a university survey
- about 10 days for a consultant' survey

Shelf seas

Loss of Reef Sharks in the Hawaiian Islands

N.W.Hawaiian Islands vs Main Hawaiian Islands

Friedlander A.M. \& E.E. DeMartini 2002 - Marine Ecology Progress Series

Reason \#2 for Having Research Surveys

- We don’t know shit without them.

Loss of sharks in the Gulf of Mexico 1000 fold decline - no one could tell without surveys

Oceanic Whitetip captures per 10,000 hooks

Did everything decline?

Explosion of Pelagic Stingrays in the Gulf of Mexico ~1000 fold increase - no one noticed

Pelagic stingray captures per 10,000 hooks

What about prey fish?

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with Henry Waszczuk and Italo Labignan, 1995,

Explosion of Pomfrets in the Gulf of Mexico ~ 1000 fold increase - no one noticed

Pomfret captures per 10,000 hooks

Reason \#3 for having Research Surveys

- No matter how obvious a pattern is, someone who is biased (i.e. does agree with me) will disagree.

Catch Per Hundred Hooks, Year $=1952$

Longitude
Myers and Worm 2003 Nature 423:280-283 download from http://fish.dal.ca

Catch Per Hundred Hooks, Year $=1953$

Catch Per Hundred Hooks, Year $=1954$

Catch Per Hundred Hooks, Year $=1955$

Catch Per Hundred Hooks, Year $=1956$

Catch Per Hundred Hooks, Year $=1957$

Catch Per Hundred Hooks, Year $=1958$

Catch Per Hundred Hooks, Year $=1959$

Catch Per Hundred Hooks, Year $=1960$

Catch Per Hundred Hooks, Year $=1961$

Catch Per Hundred Hooks, Year $=1962$

Catch Per Hundred Hooks, Year $=1963$

Catch Per Hundred Hooks, Year $=1964$

Catch Per Hundred Hooks, Year $=1965$

Catch Per Hundred Hooks, Year $=1966$

Catch Per Hundred Hooks, Year $=1967$

Catch Per Hundred Hooks, Year $=1968$

Catch Per Hundred Hooks, Year $=1969$

Catch Per Hundred Hooks, Year $=1970$

Catch Per Hundred Hooks, Year $=1971$

Catch Per Hundred Hooks, Year $=1972$

Catch Per Hundred Hooks, Year $=1973$

Soak time coefficient

Change in biomass or abundance

Reason \#4 for having Research Surveys

- We can understand biology.

Haddock

Fig. 2. Predator diversity in the ocean, predicted from the northwest Atlantic long-line logbook (A), and observer data (B), Hawaiian observer data (C), and Australian observer data (D). Color codes indicate levels of species diversity calculated by rarefaction and expressed as the expected number of species per 50 individuals. Red cells indicate areas of maximum diversity, or hotspots. The dotted lines represent $1,000-\mathrm{m}$ isobaths, identifying the outer margins of continental slopes.

3 Central design criteria

- Don't change the design or gear.
- Identify and count everything (trash today is gold tomorrow, e.g. snow crabs, hagfish, urchins, Atlantic halibut).
- Keep sample sites constant in space and time.

How long do surveys last before they are "improved"? Not very long.

Histogram of all research surveys in Northwest Atlantic (north of Nova Scotia)

Make surveys consistent.

No matter how smart the old guy was, remember that you can modify the protocols to improve the survey. This is always the case for any new person.
It is not possible to standardize very different survey gear with the amount of time available. For example in the Newfoundland groundfish surveys, in order to estimate the selectivity of cod, other species was done.

How many samples do you need

 to take to cross compare two different types of trawl gear?- More than you can because you have to examine all depth, species and size composition -
- Not all size/species are present in the year a comparison is done.

Count Everything (even the jellyfish)

Sponges
Distribution and Abundance Maps (kg/hectare)
(Data derived from standard NMFS groundfish/crab trawl surveys where
catches of noncommercial species are also enumerated and weighed.)
In Alaska NMFS even counts the sponges.

Keep sites constant in space and time.

- Perhaps the most accurate groundfish survey in the world is the English Groundfish fixed station survey with a sampling CV of

Fixed station surveys (English North Sea) have much lower estimation error variances for cod

Estimation error variance

Fixed station surveys (English North Sea) have much lower estimation error variances for haddock and whiting

Estimation error variance

A word about acoustic surveys

- They show great promise, just as they did 50 years ago.
- Check back in 2053.

Calibrate CPUE

Harley Myers CJFSA 2001 http:fish.dal.ca

Resolve Fundamental Questions of Population and Community Biology:

- The basic approach:
- Hierarchical model - over species - over populations - over cohorts
- Surveys are vastly underutilized for this New methods need to be developed.

How to use survey data for one cohort:

- The basic approach:
- Hierarchical model - over species - over populations - over cohorts
- Result are general results -
- Surveys are vastly underutilized for working out

Hjort's (1914) critical period hypothesis

- 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
- This is the fundamental issue in population regulation and ecology of fish.

Hjort's Hypothesis: Strong Version

Variability in recruitment increase with age for cod and decreases for trout.

Hjort's Hypothesis:Weak Version

Critical period hypothesis: weak version

- $\operatorname{Var}\left(\right.$ mortality $\left._{\text {ageccriticaa }}\right)$
>>Var(mortality age>critical) Densitydependent mortality after the critical period does not alter ordering of year-class size.

Hjort's Hypothesis: NOT Stochastic Mortality

Hjort's Hypothesis: NOT

Density Dependent mortality after critical period alters ordering of year class size,
e.g. Over-compensation

To test Hjort's hypothesis we need a model which:

- Use research surveys which estimate abundance at different ages of the same cohort.
- Estimate the variance in mortality.
- Estimate density-dependent mortality.
- Treat cohorts as random effects.
- Include measurement error.
- Obtain estimates that can be combined across populations.

The state of the art until now:

- Myers and Cadigan (1993a and b) developed method to estimate density-dependent mortality and the variance in mortality in the presence of measurement error.
- Results could be combined across populations using meta-analysis.
- Can. J. Fish Aquat. Sci. 50: 1576—1590.
- Can. J. Fish Aquat. Sci. 50: 1591-1598.

Abundance index

Table 1. Data for the North Sea cod stock from VPA in millions of fish, IYFS innumbers per hour fished, and EGFS in numbers per hour fished.

Year class	$\underset{\text { 1-yT-oids }}{\text { VPA }}$	IYFS 1-yr-olds	$\begin{gathered} \text { IYFS } \\ \text { 2-yr-olds } \\ \hline \end{gathered}$	EGFS 0 -yr-olds	EGFS 1 -yr-olds	EGFS 2-yr-olds
1970	847	98.30	34.50			
1971	159	4.10	10.60			
1972	289	38.00	9.50			
1973	232	14.70	6.20			
1974	426	40.30	19.90			
1975	196	7.90	3.20			4.50
1976	726	36.70	29.30		62.70	12.50
1977	426	12.90	9.30	13.90	22.80	5.80
1978	449	9.90	14.80	12.60	24.20	6.70
1979	800	16.90	25.50	18.60	50.80	13.90
1980	271	2.90	6.70	10.20	11.40	2.90
1981	557	9.20	16.60	74.20	32.40	11.00
1982	269	3.90	8.00	2.50	15.40	4.70
1983	534	15.20	17.60	95.10	61.20	11.90
1984	108	0.90	3.60	0.40	4.30	1.20
1985	581	17.00	28.80	8.30	34.40	10.70
1986	257	8.80	6.10	1.20	14.20	4.10
1987	201	3.60	6.30	0.40	8.40	2.50
1988	324	13.10	15.20	16.80	22.80	5.10
1989		3.30		6.0	6.10	
1990				3.90		

Fig. 1. Pairwise plots of abundance estimates for North Sea sole (Table 1). The estimates are log transformed. The correlation coefficient is presented in the lower right comer.

$$
\left[\begin{array}{cccc}
\operatorname{VAR}\left(l_{t, 0,1}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{l, 0,2}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{l, 1,1}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{t, 1,2}\right) \\
& \operatorname{VAR}\left(l_{l, 0,2}\right) & \operatorname{COV}\left(l_{l, 0,2}, l_{t, 1,1}\right) & \operatorname{COV}\left(l_{t, 0,2}, l_{t, 1,2}\right) \\
& & \operatorname{VAR}\left(l_{l, 1,1}\right) & \operatorname{COV}\left(l_{\left.t, 1,1, l_{l, 1,2}\right)}\right. \\
& & & \operatorname{VAR}\left(l_{l, 1,2}\right)
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\phi+\theta_{0,1} & \phi & \lambda \phi & \lambda \phi \\
& \phi+\theta_{0,2} & \lambda \phi & \lambda \phi \\
& & \lambda^{2} \phi+\psi+\theta_{1,1} & \lambda^{2} \phi+\psi \\
& & & \lambda^{2} \phi+\psi+\theta_{1,2}
\end{array}\right]
$$

Variance in mortality after critical period low for gadoids and flatfish.

Fig. 4. Relationships between the $\log _{e} 0$-group at time t (x-axis) and the $\log _{e} 1$-group at time $t+1$ (y-axis) for each area.

Fig. 5. Values of the ratios of the coefficients of variation of the 1-group, $\mathrm{CV}\left(N_{1}\right)$, to those of the 0 -group, $\mathrm{CV}\left(N_{0}\right)$, for the 11 areas (identified by their first three letters). This ratio indicates whether the relative variability in the 1 -group is lower than (ratio <1.0) or greater than (ratio >1.0) the variability in the 0 -group.

Models must actually deal with the non-Gaussian nature of the data.

Nonlinear key factor analysis with measurement error.

- Myers and Cadigan analysis limited to one form of density-dependent mortality - mortality proportional to log abundance, other cases VERY hard.
- We have recently developed solutions for nonlinear random effects models with measurement error for the general problem that can estimate ANY nonlinear function and ANY distribution for mortality and estimation errors.
- These methods use simulated maximum
likelihood methods to in a random effects nonlinear state space model using auto-differential software.

Georges Bank

Predictions and Preliminary Results:

- Hjort's strong hypothesis: never true.
- Hjort's weak hypothesis: approximately true for gadoids, flatfish, and freshwater percids.
- Hjort is wrong for salmonids
- Small pelagics - At low abundance Hjort's weak hypothesis true, but not true for high abundance.
- Species interactions more important.

Underutilized Research Surveys

- Multi-species analysis require the analysis of surveys in multiple areas.

Community Changes on Southern Grand Banks

Grand Banks forage fish

- Groundfish and small forage fish biomass are inversely correlated

Source: Casey 2000

Serial increases in Greenland shrimp

Cod versus shrimp catches in all

 NAFO areas combined

Cod versus lobster catches

Cod versus crab catches

Major shrimp stocks in the North Atlantic

Similar cod diet across regions

Source: Pálsson 1983, Boerje et al. 1987
Magnússon and Pálsson 1991, Rodríguez-Marín and del Río 1999 Lilly et al. 2000, Berenboim et al. 2000, Torres et al. 2000

Cod and shrimp biomass in the North Atlantic: time series

Cod and shrimp biomass in the North Atlantic: correlations

Step 1: Dealing with

autocorrelation and measurement

error

Simple analysis
Corrected analysis

Region	r	N	P	r^{*}	N^{*}	P^{*}
Labrador	-0.746	23	0.000	-0.827	4.8	0.054
N. Newfoundland	-0.911	13	0.000	-0.976	3.3	0.012
Flemish Cap	-0.526	12	0.073	-0.607	6.3	0.161
N.Gulf of St. Lawrence	-0.708	19	0.000	-0.827	3.4	0.165
Eastern Scotian Shelf	-0.856	21	0.000	-0.982	3.5	0.004
Gulf of Maine	-0.131	31	0.485	-0.147	9.3	0.701
Iceland	-0.459	33	0.006	-0.63	8.2	0.075
Barents Sea	-0.412	18	0.087	-0.635	11.7	0.023
Skagerrak	0.788	11	0.002	0.808	5.0	0.061

Source: Hedges \& Olkin 1985, Pyper \& Peterman 1998

Step 2: Random-effects metaanalysis

forcing

Step 3: Testing environmental

Shrimp - temperature $P=0.174$

Labrador N. Newfoundland

Flemish Cap Gulf of St. Lawrence
E. Scotian Shelf Gulf of Maine Iceland
Barents Sea
Skagerrak
FE Weighted mean RE Weighted mean

Cod - temperature $\mathrm{P}=0.001$
weights (\%)

Step 4: Examining spatial correlation

- Cod recruitment is correlated on scales $<500 \mathrm{~km}$
- Stocks are not entirely independent
- Sensitivity analysis shows that this does not change results

Distance (Thousand km)

Step 5: Testing for latitudinal gradients

Cod - shrimp

Cod -
temperature

Common patterns? Gulf of Alacka

From: Anderson and Piatt 1999

Gulf of Alaska forage fish

From: Anderson and Piatt 1999

Space - the final frontier

Correlation of age1cpe between pairs of time series versus distance

ent

Distance (m)

Data has been log transformed

Dan's Empirical variogram for age1 cpe

1991

Distance (km)

Lake means have been removed

A modest proposal

- Global repeat of the earliest surveys

The Awards:

- For the longest shelf survey that absolute abundance has been estimated:
- Newfoundland DFO for the Southern Gulf and St. Pierre Bank Groundfish Surveys

The Awards:

- For the longest consistent shelf survey:
- Woods Hole NMFS for the spring Georges Bank/Gulf of Maine surveys

The Awards:

- For the best Coral Ecosystem survey:
- State of Hawaii/NMFS for the Northwest Hawaiian Islands survey

The Awards:

- For the best inland lake survey:
- State of Minn. DNR for their Large Lake Surveys

The Awards:

- For the best (and only) surveys of close to virgin open water pelagic systems:
- NMFS Hawaii for the 1950’s Pacific longline survey
- NMFS Pascagoula for 1950’s Gulf of Mexico longline survey

50 years of surveys in the open ocean - it was a very different place

Ransom A. Myers

Peter Ward
Julia Baum

Dalhousie University

Methods

- Collect all survey data in the world
- Develop new methods, using meta-analytic methods, that allow different surveys to be cross calibrated
- Infer the virgin state of the worlds open oceans.

1950s
biomass $=6223 \mathrm{~kg}$

