Robust Estimation of Dynamic Models with Irregularly Spaced Data:

State-Space Models for
Movement
Foraging Behavior
Irregularly Spaced Environmental Data Community Dynamics

Limitations of Traditional Methods for TimeSeries data:

ASSUMPTION: ERRORS ARE GAUSSIAN
 REALITY
 :ERRORS HAVE LONG TAILS

- Data observed with error
- Errors can be non-Gaussian

Longitude

Satellite telemetry

Radio telemetry

Argos location errors

Argos location errors

3 locations more than 100 km away removed

Likelihood Contours for t-distribution parameters

ASSUPTION: BEHAVIOUR IS STATIONARY REALITY : BEHAVIOUR CHANGES WITH TIME

A Switching SSM

Switching model, estimates switches b/w 2 behavioural modes

ASSUMPTION: THE WORLD IS LINEAR REALITY : NONLINEARITY

Blue marlin (Makaira nigricans)

Sailfish
 (Istiophorus albicans)

Can we explain such widespread patterns

 (seen across the world's largest ecosystem) using a single equation?
One hypothesis:

$X(t)$ - number of mature fish at the start of year t
If fish spawn once then die (e.g. salmon)

$$
X(t+1)=\frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

a - age at maturity (fish spawn the year after they

$$
\text { reach age } a \text {) }
$$

Mature fish
at time $t+1$,
$X(t+1)$

Now assume proportion p of adults survive from
year to year and continue to spawn:

$$
X(t+1)=p X(t)+\frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

Now introduce fishing:

$$
X(t+1)=e^{-q F} p X(t)+e^{-c q F} \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

proportions that survive fishing effort F
q - species-specific susceptibility to fishing
c - number of years fished before reaching maturity

Life cycle (blue marlin):
fishing mortality

Replacement line has gradient 1-p (with no fishing)

Fishing increases the gradient of the replacement line...

... and increased survivorship gives higher α, raising SR curve.

Now assume proportion p of adults survive from
year to year and continue to spawn:

$$
X(t+1)=p X(t)+\frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

Total future individuals from $X(t-a)$ is
average number of times
each fish will spawn $\times \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}$

$$
\begin{aligned}
& =\sum_{j=0}^{\infty} p^{j} \times \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}} \\
& =\frac{1}{1-p} \times \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
\end{aligned}
$$

Now assume proportion p of adults survive from year to year and continue to spawn:

$$
X(t+1)=p X(t)+\frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

Replacement line now has gradient 1-p $=0.5$

proportions that survive fishing effort F

Now introduce fishing:

$$
X(t+1)=e^{-q F} p X(t)+e^{-c q F} \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

proportions that survive fishing effort F

Now introduce fishing:

$$
X(t+1)=e^{-q F} p X(t)+e^{-c q F} \frac{\alpha X(t-a)}{1+\frac{X(t-a)}{K}}
$$

q - species-specific susceptibility to fishing
c - number of years fished before reaching maturity

Fishing increases the gradient of the replacement line

Fishing effort, $\mathrm{F}=0$
Max. recruits
per spawner, $\alpha=3$

Fishing effort, F =
 0
 0.2

Max. recruits
per spawner, $\alpha=3$
6

Mature fish at time $t+1$

Fishing effort, $\mathrm{F}=0$
0.2
0.8 Max. recruits

$$
\text { per spawner, } \alpha=3 \quad 6 \quad 15
$$

Plot contours of the ratio R of the steady state with fishing to the unfished steady state:

Blue marlin

Fishing $:-0.5$ effort

State-Space models (SSMs)

> Time series models
> Infer unobservable (true) states from data observed with error
> Separate process noise from estimation error
> Extremely flexible framework

- Accommodates many model structures

SSMs in more detail

> Measurement eqn.

- Relates 'true’ locations to observed via error function
> Transition eqn.
- Describes movement process

$$
y_{t}=h_{t}\left(\alpha_{t}, \varepsilon_{t}\right)
$$

$$
\alpha_{t}=f_{t}\left(\alpha_{t-1}, \eta_{t} ; \gamma\right)
$$

$p\left(\alpha_{1} \mid \alpha_{0}\right)$

$1^{\text {st }}$ location $=$ release point
eg release location estimated with GPS

Integrate over predicted \& observed densities: Bayes Rule

Estimate biology (γ)

> Innovation for likelihood function
> Allows estimation of γ
> Denominator of Bayes Rule

Meta-analysis is required

> Information combined oveI multiple pathways
> Biological parameters, γ, random variables
$\gamma_{i} \sim N\left(\mu, \sigma^{2}\right)$

Meta-analysis is required

> Optimal parameter
 estimation for data-poor paths

> Individual variation inferred

$1^{\text {st }}$ location $=$ release point
eg. release location estimated with GPS

Apply dynamics (transition eqn)

Observe a location with error

Integrate over predicted \& observed densities (Bayes Rule)

Updated prediction becomes prior for next time step

Software

WinBUGS: Bayesian Analysis Using Gibbs Sampling

Bayes Rule

$$
p\left(\mathbf{x}_{t} \mid Y_{t} ; \gamma\right)=\frac{p_{y}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{Y}_{t-1} ; \gamma\right)}{\int p_{y}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{Y}_{t-1} ; \gamma\right) d \mathbf{x}_{t}}
$$

http://www.mrc-bsu.cam.ac.uk/bugs/

Mike James
Andrea Ottensmeyer

Identification of high-use areas and threats to leatherback sea turtles in northern waters

James, Ottensmeyer and Myers Ecology Letters (2005)

What you can do if you take Stats 2050

Leatherback turtles are unique in that they expose their pineal spot to sunlight.

Turtles make more progress south during the day

_

Robust Estimation

> Does it make sense to have an error distribution with infinite variance?
> The estimated t-distributions sometimes have degrees of freedom less than 2, i.e. infinite variance.

Weights in Canadian waters

Nesting female morphometrics: St. Croix, U.S.V.I.
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147.
Lines fit by constant slope analysis of covariance after log transformation.

Male leatherback movements

- not previously described
- annual migratory cycle that includes movement between temperate foraging areas and tropical breeding areas

James, Eckert and Myers Marine Biology (in press)

Male residency in nearshore waters off large nesting colonies

- Location and timing of mating activity not previously known
- long-term tracking (e.g. 20 months +) reveals fidelity for breeding areas

Meta-analytic State Space Movement Models

Ian Jonsen

Joanna Mills
Greg Breed

Capaldi etal. 2000.
Nature 403:537-540

(20

- First documented return migrations to foraging areas
- return migrations to Canada/Northeastern U.S. are annual
- similar migratory cycle for sub-adults and females in their internesting years
- modified cycle for mature males and nesting females (nearshore phase in tropical waters)

Why studying trajectories is an important thing to do.

Imperial Mathematician

Kepler's elliptical orbit for Mars..

Do animals follow Great Circle Routes for long distance

 migration?
Regularized Track of Turtle 18284

Corresponding GC Route

Filtered Data

0 Raw data

- State estimates

Derived Variables Regularized data
 State-space estima

Turtles are close to the surface during the day during migration

Meta-analysis of everything

> Dan Ricard - Meta-analysis of diffusion from MPA's
> Scott Sherrill-Mix - Meta-analysis of fisher's behaviour when populations change
> Andy Edwards and Coilin Minto - Meta-analysis of species interactions
> Julia Baum - Carrying capacity and recovery

Labrador and N.E. Newfoundland

E. Scotian Shelf

S.W. Scotian Shelf

Central Baltic

Spawners (tonnes/km^2)

There is much less than 10% of cod left -

Proportion of virgin biomass

Source: Myers and Worm 2005.
Proc. R. Soc. Lond. B

Can wild salmonid populations survive salmon aquaculture?

Jennifer Ford

Use paired comparisons.

```
A PANED COMPARISON EXPERIMENT IS ONE OF THE MOST EFFECTIVE WAYS TO
REDUCE MATURAL VARIABILITY WHLE COMPARING TREATMENTS, FOR EXAMPLE, IN
COMPARING HAND CREAMS, THG TWO BRANDS ARE RANDOMLY ASSIGNED TO
EACH SUBJECT'S RIGHT OR LEFT HANDS. THIS ELIMINATES VARIABILITY DUE TO
SKIN DIFFERENCES.
```


Source: Cartoon Guide to Statistics, Larry Gonick \& Woolcott Smith

(seuuol) uo!̣onpoid ann|noenbe uounes o! !uent uplon

POLICY FORUM

ECOLOGY

Hatcheries and Endangered Salmon

Ransom A. Myers, ${ }^{1}$ Simon A. Levin, ${ }^{2}$ Russell Lande, ${ }^{3}$ Frances C. James, ${ }^{\text {W William W. Murdoch, }}{ }^{5}$ Robert T. Paine ${ }^{6}$

Tbe role of hatcheries in restoring threatened and endangered populations of salmon to sustainable levels is one of the most controversial issues in applied ecology (l). The central issue has been whether such hatcheries can work, or whether, instead, they may actually harm riding issue, however, has dicial decision.
dicial decision
On 10 September 2001, Michael Hogan revoked the listing, by the National Marine Fisheries Service (NMFS) of all Oregon coast colbo salmon under the Endangered Species Act (4). He ruled that, if hatchAct (4). Her ruled mat, if hatchery fish were includedion the
same distinct population segsame distinct population seg-
ment as the wild fish with which they are genetically aswociated, then they must be listed together. This approach
potential listing under the Endangered Species Act, including hatchery fish in an ESU confounds risk of extinction in the wild with ease of captive propagation and ignores important biological differences etween wild and hatchery fish
We define "batchery fish" as fish fertilized and/or grown artificially in a produc-
could have devastating consequences: Wild salmon could docline or go extinct while only hatchery fish persist. Petitions are now nificant units (ESUs) (5)

An ESU is defined as a genetically distunct segment of a species, with an evolutionary history and future langely separate from other ESUs (6). For taxonomic purposes, one could use genetic similarity to classify hatchery fish as part of the ESU from which they were derived. However, for assessing ESU extinction risk and/or

Department of Biology, Dalhousie University. Halifax. Nove Scotis, Conads B3H 4J1: ransamuryersodal.ca 'Department of Ecology and Evolutionary
 University of Califorria-San Diega Ls Jolla. CA. 92093. USA; rlandePucsd.edu. 'Department of Biological Soience, florids State University. Tallahassee, FL 32305, U5A jamesibbiatsuesu.
SDepartment of Department of Ecology. Evolution, and Marine
Biologe. University of Calidemia, Santa Qaibiara, CA 93106 . USA murfochelifesciucsheda "Department of Biologi. University of Washirgton Seattie, WA
tion or conservation hatchbrood stock show domestica bon effects, senetic adapta won effects, genetie adrplaments that are genemlly mal daptive in the wild. Hetch ry fish usually have poor yrvival in the wild and al ered morphology, migration, and feeding behavior (7) O and feeding behavior (7). On are typically larger, compete are typically larger, compete
with wild fish (I). Their high local abundance may mask local abundance may mask
habitat degradation, enhance predator populations, and al-
 predator populations, and allow fishery exploitation to increase, with The absence of imprinting to the natal stream leads to greater straying rates, and hat spreads genes not adapted locally (t) Also, hybrids have poor viability, which may lake two generations to be detected (9). Interagency draft criteria (IO) describe hatchery fish most appropriate for inchusion in an ESU as those founded with wo generations of those that had regular infusions of fish from the wild population. However, fish grown in hatcheries for even wo generations may not assist population ecovery; their rate of survival in the wild is much lower than that of wild fish (1I). Regularly infusing hatchery stocks with natural fish may also be a drain on the natural system. Hence, even these hatchery fish should not be included in an ESU, even if they are indistinguishable at the quasi-ncural molecular genetic loci typiused to identify an ESU
Much evidence exists that hatcheries caninitely (7) In the imer Bay of Fundy in

Eastern Canada, hatchery supplementation of Atlantic salmon occurred for more than a century (12). Despite the longevity of this program, it failed to maintain viable natural populations. Hatcheries effectively disguised long-term problems, which probably contributed to the near extirpation of native Atlantic salmon. Moreover, as recommended by the World Conservation Union (IUCN), long-term reliance on artificicial propagation is imprudent, because of the impossibility of its maintenance in perpetuity ($/ 3$)
Although their effectiveness has not been shown (14), conservation batcheries may play a role in future salmon recovery. However, to avoid the dysgenic effects of ies should be stritly temporary and should ies shat preve striecly ienporary and should not prevent pricel Species Ap
To aldess ger of the subid
To address one of the subsidiary lawview of eight ESUs by 31 March 2004. NMFS should continuc to pursue its current recovery goal of establishing self sustaining, naturally spawning populations. The danger of including hatchery fishas part of any ESU is that it opens the legal door to the possibility of maintaining a stock solely through hatcheries. However hatcheries generally reduce current fitness and inhibit future adaptation of natural populations Hence, the legal definition of an ESU must be unambiguous and must reinforce what is known biologically. Hatchery fish should not be included as part of an ESU

Nationd Eviwarch Council Lpstroamt Suins and
 2. Hiborn / Witan Can / Fisis (1993)
3. 2. SMaples, Fstaries 24. 12 (Fetorary 1999)
 (D.Cr: 2007)
5. R. Lent Fed Regist 67,6215 (2002)
6. R. S. Waples, Mar. Fist. Rev. 53, 11 (3 1991).

Wastington DC 1999)

10. NMF

nisk for West Cont Salmon" A O Mactal. IC C Waizuright Eds. (NOAA Tech Mema NMESS-NWFSC. 536. US. Dessitment of Commerce. Washington. DC.
12. A. 1

Fist. Aquac Scei (na 1123) 2003 Amio, Can. Data Rep.
13. Fisch Aquat, SCL, (na 1123) 2003.
13. UCNS, 2002
14. F. Allordet D s. When

Cose Mistaries from Nature) C. Asise f) L. Hamrick,
15. We. (Chopman \& Hal. New York, 1996). pp. 230-280.
15. We thark R. 5 . Wapies for epplining aspects of the

26 MARCH 2004 VOL 303 SCIENCE

ECOLOGY

Hatcheries and

Endangered Salmon
Ransom A. Myers, ${ }^{1}$ Simon A. Levin, ${ }^{2}$ Russell Lande, ${ }^{3}$ Frances C. James, ${ }^{4}$ William W. Murdoch, ${ }^{5}$ Robert T. Paine ${ }^{6}$

There is always a rapid loss of fitness in the wild with hatcheries; after a few generations hatchery salmon may be useless for recovery.

Sharks

> Christine Ward-Page - Reef sharks
> Luis Lucifora and Travis Shepherd - world
> Anna Massa -Argentina
> Mike Stokesbury - Greenland shark
> Peter Ward - Central Pacific
> Julia Baum - Gulf of Mexico
> Gretchen Fitzgerald - Pelagic species
> Veronica Garcia - deepwater species

How do we Estimate of Trends Using Crazy

 Data:There are few guidelines for students dealing with real data
> Joanna Flemming
> Dan Kehler
> Eva Cantonni
> Leah Gerber
> Wade Blanchard

Analysis of old survey data from the Gulf of Lion (where we only have partial data, i.e. the number of positive counts) show that 12 species of sharks and rays meet the IUCN criterion for endangered.

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

Results

1 Caribbean	6 NE Coastal
2 Gulf of Mexico	7 NE Distant
3 Florida	8 Sargasso
4 S Atlantic Bight	9 S America
5 Mid Atlantic Bight	

Data Analysis

- Assume catch follows negative binomial distribution
- Analyse positives only \rightarrow zero-truncated distribution

$$
\frac{f\left(y_{T}\right)=\frac{\Gamma(y+\theta)^{y_{T}}}{\Gamma(y)}\left(\frac{\mu}{\theta+\mu}\right)^{y_{T}}\left(\frac{\theta}{\theta+\mu}\right)^{\theta}}{1-\left(\frac{\theta}{\theta+\mu}\right)^{\theta}}
$$

Robustness Analyses

Assume reporting rate has stayed constant for:

- full dataset
- for a subset of vessels: recorded species at least once recorded species at least once in a given year

Negative binomial models
Delta-lognormal models

- proportion of positives modelled separately from positives
- standardized CPUE is the product of the two

Area, species range, and endemism

Endemism is explicitly defined by spatial scale. Is there a way to link all these diagrams, and can we create a unifying theoretical model?

Can we compare the patterns of endemism between habitats and assess their differential vulnerability?

Susanna Fuller - Deep water sponge conservation

What was the most common large animal ($>50 \mathrm{Kg}$) in the world? (perhaps this one was)

Loss of sharks in the Gulf of Mexico

300 fold_decline - no_nene noticed

Oceanic Whitetip captures per 10,000 hooks

Circumstantial evidence of oceanic whitetip sharks being common in the Gulf of Mexico

Fitting a simple model to crazy data can yield reliable, and very powerful conclusions

Newspaper reports of sharks in Croatia

With training, "experts" can ignore the most obvious of data:

1872 - Man's head and leg and dolphin in stomach
1872 - 8 Great White Sharks reported caught
1888 - Woman's body and lamb in stomach
1894 - Preserved at Zagreb Nat. Hist. Mus.
1926 - Woman's shoes, laundry in stomach
1946 - Pig of 10 kg in stomach
1950 - Encounter during eating a dead calf
1954 - Attack on boat
1975+ -No sightings.

Newspaper reports of sharks in Croatia

Fig. 21.-Recaptures to October, 1934, of cod tagged in the Jeddore Rock to Egg Island area, N.S., in May, 1934.

Fig. 18.-Recaptures in May to October, 1934, 1935, 1936 and 1937, of cod tagged near Halifax in June, 1934.

Fig. 15.-Recaptures during "summers" of 1927, 1928, 1929 and 1930 of cod tagged off Shelburne, N.S., during September and the first day of October, 1926.

Hippocratic Oath:
 Modified for Fisheries Biologist by RAM:

> "First, don’t drive
any population or
species extinct".

Lewison et al. 2004 Ecology Letters

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

Results

Same results for trawl surveys in Gulf of Mexico

Scalloped hammerhead

Same results for trawl surveys in Gulf of Mexico

Great hammerhead

Decline of Mediterranean Sharks

By catch associated with a Tuna Trap
In Ligurian Sea
"Tonnara di Camogli"

Decline of Hammarhead sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Decline of Mediterranean Sharks

By catch associated with a Tuna Trap

In Tirrenian Sea

"Tonnarella di Baratti"

Hammerhead shark

School shark

Smooth-hound

There are at least 2 scalloped hammerhead sharks in

 the Northwest Atlantic

Stoner, D. S., J. M. Grady, W. B. Driggers, K. A. Priede and J. M. Quattro. Molecular Evidence for a Cryptic Species of Hammerhead Shark (Genus Sphyrna). Marine Biology (submitted).

Proportional reduction in current fishing mortality needed to ensure survival of shark populations

Catch Per Hundred Hooks, Year $=1952$

Catch Per Hundred Hooks, Year $=1953$

Catch Per Hundred Hooks, Year $=1954$

Catch Per Hundred Hooks, Year $=1955$

Catch Per Hundred Hooks, Year $=1956$

Catch Per Hundred Hooks, Year $=1957$

Catch Per Hundred Hooks, Year $=1958$

Catch Per Hundred Hooks, Year $=1959$

Catch Per Hundred Hooks, Year $=1960$

Catch Per Hundred Hooks, Year $=1961$

Catch Per Hundred Hooks, Year $=1962$

Catch Per Hundred Hooks, Year $=1963$

Catch Per Hundred Hooks, Year $=1964$

Catch Per Hundred Hooks, Year $=1965$

Catch Per Hundred Hooks, Year $=1966$

Catch Per Hundred Hooks, Year $=1967$

Catch Per Hundred Hooks, Year $=1968$

Catch Per Hundred Hooks, Year $=1969$

Catch Per Hundred Hooks, Year $=1970$

Catch Per Hundred Hooks, Year $=1971$

Catch Per Hundred Hooks, Year $=1972$

Catch Per Hundred Hooks, Year $=1973$

Catch Per Hundred Hooks, Year $=1974$

Catch Per Hundred Hooks, Year $=1975$

Catch Per Hundred Hooks, Year $=1976$

Catch Per Hundred Hooks, Year $=1977$

Catch Per Hundred Hooks, Year $=1978$

Catch Per Hundred Hooks, Year $=1979$

Catch Per Hundred Hooks, Year $=1980$

Totally Stupid Reasons for not Believing the Obvious

> You ignore research surveys.
> Removing Large Predators Couldn’t Possibly Affect Survival of Other Fish.
> Fishing Couldn’t Possibly Affect the Size of Tuna.
> Fishermen are so stupid they cannot use satellite data to find tuna.
> Fishermen are so stupid that they don't improve their gear.

These estimates are conservative: 6 Fishermen are smarter (gps, satellite information, ACDP (Acoustic Current Doppler Profiler)).

Locations of a leatherback turtle over a two week period tagged by my student Mike James that maintains its position within a cold core ring (somehow).

However, fish may be a lot smarter too (the stupid ones were caught).
New Materials forFishing GearDouble EfficiencyDesign, every other gangionwas monofilament

Figure 3

(a) Day Operations

(This approach shows that nonstatistical "habitat models" do not appear to work: results for bigeye tuna)

Change in body size

Analysis repeated using independent research data

Change in biomass or abundance

Ecosystem changes are consistent with a 10 fold decline in predation

>Key prey species would be predicted to increase by the changes in predation rate

Table 7. The occurrence of bramidae and gempylidae in tuna and billfish stomach contents in other studies.

species	Bramidae	Gempylidae	Literature	Region
Bigeye tuna	High	low	Moteki et al. (2001)	Pacific
	High	no	Mattews et al. (1977)	Atlantic
Yellowfin tuna	High	low	Moteki et al. (2001)	Pacific
	High	low	Mattews et al. (1977)	Atlantic
Albacore	High	High	Mattews et al. (1977)	Atlantic
Sword fish	High	low	Moteki et al. (2001)	Pacific

Loss of sharks in the Gulf of Mexico 300 fold decline - no one noticed

Oceanic Whitetip captures per 10,000 hooks

What about prey fish?

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with Henry Waszczuk and Italo Labignan, 1995,

Explosion of Pomfrets in the Gulf of Mexico ~ 1000 fold increase - no one noticed

Pomfret captures per 10,000 hooks

The Rise of the Marine Mesopredators

Pelagic Sting Ray Pteroplatytrygon violacea

Photos from Phillip Colla, photography

Explosion of Pelagic Stingrays in the Gulf of Mexico ~1000 fold increase - no one noticed

Pelagic stingray captures per 10,000 hooks

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca

The First Collective Act of Humanity was to save the great whales -
despite massive denial

- we can do
the same for the remaining virgin areas of the oceans and for the great sharks.

Is shrimp trawling driving sharks and rays extinct?

Shallow species are going extinct
Deep species are increasing

Species Group Time (yr) Source

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca

Single species models are not even remotely consistent with the data, e.g. Swordfish from the South Atlantic

Sensitivity 4, Japanese index

White Marlin: Atlantic, single species models do not work Very well.

ICCAT shark assessments in the Atlantic don't even remotely fit reliable data: Similar pattern for US government research surveys.

Figure 10 (above). Fit of the model to the North Atlantic blue shark CPUE data for each of the runs considered.

Atlantic, Latitude $=-15$ to -10

Bluefine tuna (observed diamonds) and modeled - not a very good fit.

Common patterns of decline

RED HERRING 1: RATIO ESTIMATION

Scenario A

Scenario B

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 4: The sharks probably declined

 more

Oceanic Whitetip captures per 10,000 hooks

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative 7: changes in depth increases overall efficiency.

Declines confirmed by independent data:

> The initial high catch rates were seen in early research surveys by Japan and US.
> Declines seen in harpoon fisheries for swordfish and tuna.
> Most tuna traps in the Mediterranean have largely been abandoned, Italy there is a decline from 100 to 3 tuna traps.
> Complete loss of species in some areas.

Loss of Bluefin Tuna Populations in the Atlantic

Perceived Contradiction in Initial Rapid Decline in CPUE

> 1. Large declines occurred when effort was relatively small

Perceived Contradiction in Initial Rapid Decline in CPUE

2. Present effort is much higher.

Perceived Contradiction in Initial Rapid Decline in CPUE

3. Present fishing mortality due to longlines is around 0.6

Perceived Contradiction in Initial Rapid Decline in CPUE

IF catchability is constant
THEN the population dynamics are impossible.

However, catchability decreases with size and size has declined

A Toy Model

> Recruitment constant
> Longline effort increases linearly over 35 years
> Catchability is proportional to the product of: (a) a cumulative normal and (b) food intake (respiration is proportional to the $2 / 3$'s power of mass)
> Present fishing mortality is around 0.6.

North Atlantic albacore cumulated catches of youngs and adults fish

Conclusion

> Immediate action needed to protect some sharks, leatherbacks, loggerheads, and some tuna (Atlantic northern bluefin)
> Productivity (juvenile survival) has increased with exploitation.
> Rapid declines in CPUE reflect real declines in large fish
> Reduced effort is needed to achieve greater economic yield

Acknowledgements

$>$ Boris Worm, Peter Ward, Leah Gerber, Julia Baum, Dan Kehler, Francesco Ferretti
$>$ Pew Charitable Trusts
Sloan Foundation - Gensuls of Marine Life, Future of Marine Animal Populations (EMAP)

- NSERC
- Pelagic Fisheries Research Program
- German Research Council
> Killam Foundation

2. Numerous colleagues who shared data

Fig. 3. Recent reconstruction, using virtual population analysis, of the Newfoundland northern cod decline, compared with estimates and projections published in various years after Canada took over the fishery under extended jurisdiction. VPA estimates based on data in Baird et al. (1992) (see also Hutchings and Myers, 1994). NAFO estimates from annual reports for years indicated of North Atlantic Fisheries Organization Scientific Council Reports, Dartmouth, NS. CAFSAC estimates from Canadian Atlantic Fisheries Scientific Advisory Committee Advisory Documents 89/1 and 91/1.

Rapid decline in older albacore.

Figure 7: Evolution of contribution of age classes 6 to 10+ computed by Morita (1977) in longliners albacore catches, 1956-1974.

Marine ecosystem robustness and the collaps marine fisheries

Ransom A. yers (RAM)
Dalhousie University, Halifax,
Canada

One hypothesis:

Collapse and Conservation of Shark Populations in the Northwest Atlantic

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

U.S. Atlantic pelagic longline sets 1986-2000

Political action is costly for any scientist.

However, it also has great benefits.

To act is to live.
To be suppressed is to die.

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

The rest of the slides are back up.

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

Proportional reduction in current fishing mortality needed to ensure survival of shark populations

Letter from senate

Put in cod

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative: 6 Fishermen are smarter (gps, satellite information, ACDP (Acoustic Current Doppler Profiler)).

Locations of a leatherback turtle over a two week period tagged by my student Mike James that maintains its position within a cold core ring (somehow).

However, fish may be a lot smarter too (the stupid ones were caught).

Step 8: You need emotional support. Support from colleagues and family is essential. You cannot do it (for long) by yourself.

Why is it so important. What makes them work.

Shelf seas

Government science was consistently wrong, and there was no effective voice from universities.

Lessons I Learned from the Cod Disaster:

> Government constrained scientists may consistently ignore what the data tells them.
> Independence is key.
> Multiple, independent analyses are crucial; or else you will be dismissed.
> Speak clearly and honestly to the press, the politicians must know that someone is watching.
> Be proactive, once an animal is ecologically extinct it is too late.

RAM's 12 step plan: From hard core math weenie to passionate conservationist: A PERSONAL ODYSSEY.

Reaching the heart through mathematics.

Final point: keep fighting, keep hoping! This happened last week: Oceanic Whitetip declared critically endangered by ICUN

> Last year is was "species of least concern".
> This change was not because we published one paper in Science, but papers based upon 3 independent datasets (plus 2 math/stats technical papers).
> Skeptics remain - more analyses are in prep from scuba surveys of jellyfish (one notices large sharks while diving in the clear open ocean.

Conclusion: The Factor of 10 Hypothesis

> Scientific investigations of marine fish stocks almost always begin after the fact.
> Here we compile data from which the size of the community of large predatory fishes can be estimated.
> New fisheries tend to deplete the biomass of large predators by at least a factor of 10 .
> These declines happen very rapidly, usually in a decade or less.

Figure stolen from Paul Anderson
> The Good -
> Ban directed fisheries on sharks.
> Control fishing on skates.
> Keep a watch on bycatch.
> The Alaska Board of Fisheries prohibited all directed fisheries for sharks in 1998. In Southeast the bycatch rate for sharks and skates taken during other longline fisheries is 35% of the target species.

Figure 1. Big skate, Raja binoculata, with stock assessment author for scale.

All large sharks declined

Shallow water species that do not survive discarding: large declines:

Are the pleistocene extinctions* going to be repeated in the ocean?

*Present North American biota has lost almost all large species -
We have no mammoths, mastodons, giant ground sloths, giant beavers, and 65 other species that weighted more than 100 kilograms.

Years Ago

The extinction of large mammals and flightless birds coincided closely with the arrival of humans in North America, Madagascar, and New Zealand, and less decisively earlier in Australia. In Africa, where humans and animals evolved together for millions of years, the damage was less severe.

Deeper skate species that survive discarding increased

Stock Assessment and Fishery Evaluation of Skate species (Rajidae) in the Gulf of Alaska

Spiny Dogfish, Northwest Atlantic: Good Science - Ugly Decisions

Danish Landings of Bluefin Tuna

Thunnus thynnus

Landings of Bluefin Tuna

Thunnus thynnus in Northern Europe*

Landings of Bluefin Tuna

Thunnus thynnus in Northeast Atlantic

Life history of sharks...

Fecundity

Decline of Mako sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

1 Caribbean	6 NE Coastal
2 Gulf of Mexico	7 NE Distant
3 Florida	8 Sargasso
4 S Atlantic Bight	9 S America
5 Mid Atlantic Bight	

Decline of Thresher sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Decline in Large Sharks's Catches by an Italian Tuna Trap

Vacchi M. et al. 2000-4th-Meeting-of-the-European-Elasmobranch-Association-Proceedings

Loss of Bluefin Tuna Populations in the Atlantic

North Sea Bluefin Tuna

