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Limitations of Traditional Methods for Time-
Series data: 

 



ASSUMPTION: Data Must be Regularly Spaced with No Missing Values 
REALITY         :MOST Movement DATA HAS MISSING VALUES  



ASSUMPTION: ERRORS ARE GAUSSIAN 
REALITY         :ERRORS HAVE LONG TAILS  
 Estimation error 

– Data observed with error 
– Errors can be non-Gaussian 

 

Radio telemetry 

Satellite telemetry 
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Argos location classes 
Argos location errors 



Argos location errors 

3 locations more than 100 km away removed 



Likelihood Contours for t-distribution parameters 
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ASSUPTION: BEHAVIOUR IS STATIONARY 
REALITY    :  BEHAVIOUR CHANGES WITH TIME 



A Switching SSM 
Switching model, estimates switches b/w 2 

behavioural modes 
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σ1     = 0.21 deg lon 
σ2     = 0.09 deg lat 
θf      = 3.06    rad  
θm    = -0.24   rad 
ρs(f)    = 0.54 
ρs(m)  = 0.82 



ASSUMPTION: THE WORLD IS LINEAR 
REALITY        : NONLINEARITY 

 



Blue marlin 
  (Makaira 
  nigricans) 

Sailfish 
  (Istiophorus 
  albicans) 
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Can we explain such widespread patterns 
 (seen across the world’s largest ecosystem) 
 using a single equation? 



One hypothesis: 
Fishing mortality 

Predation on sailfish juveniles 

Survivorship of sailfish juveniles 

Sailfish population 





Mature fish 
at time t+1, 





0 1 2 3 4+ 

spawning 

survival 

fishing mortality 
Life cycle (blue marlin): 



Mature fish 
at time t+1, 
from X(t-a) 
spawners 

Replacement line has gradient 1-p (with no fishing) 

steady-state 
X* 



Mature fish 
at time t+1, 
from X(t-a) 
spawners 

Fishing increases the gradient of the replacement line… 

1-p 



Mature fish 
at time t+1, 

…and increased survivorship gives higher α, raising SR curve. 







Mature fish 
at time t+1, 

replacement 
line (1:1) 

steady-state 
X* 



Mature fish 
at time t+1, 

replacement 
line (1:1) 

X* 
steady-state 



Mature fish 
at time t+1, 
from X(t-a) 
spawners 

Replacement line now has gradient 1-p = 0.5 

steady-state 
X* 







Mature fish 
at time t+1, 
from X(t-a) 
spawners 

Fishing increases the gradient of the replacement line 

1-p 



Mature fish 
at time t+1 

Fishing effort, F =     0            
Max. recruits 
  per spawner, α =     3  

Sailfish 
Replacement curve steeper 

as shorter lived species 

Blue marlin 



Mature fish 
at time t+1 

Fishing effort, F =     0                      0.2     
Max. recruits 
  per spawner, α =     3           6  

Blue marlin 

Sailfish 



Mature fish 
at time t+1 

Fishing effort, F =     0                      0.2                     0.8 
Max. recruits 
  per spawner, α =     3           6    15 

Blue marlin 

Sailfish 



Blue marlin 

Albacore 

Sailfish 

Pomfrets 



Plot contours of the ratio R of the steady state with fishing 
  to the unfished steady state: 

α 

Fishing 
  effort 

Blue marlin 



α 

Fishing 
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State-Space models (SSMs) 

 Time series models 
 

 Infer unobservable (true) states from data observed with 
error 
 

 Separate process noise from estimation error 
 

 Extremely flexible framework 
– Accommodates many model structures 



SSMs in more detail 

 Measurement eqn. 
– Relates ‘true’ locations 

to observed via error 
function 

 

 Transition eqn. 
– Describes movement 

process 

 αt = ƒt (αt-1, ηt ; γ)  

yt = ht (αt , εt) 



t = 1 
)|( 01 ααp

1st location = release point 
 
eg release location estimated 
with GPS  

Prior 
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t = 1 
Apply dynamics (transition eqn) 

Prediction 

Prior 
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t = 1 
Observe a location with error; σ  



Prior 

Prediction 

Observation 

Update 

∫ −

−

=

ttttty

tttty

tt

dpyp
pyp

p

αγαα

γαα

γα

);Y|()|(
);Y|()|(

);Y|(

1

1

t = 1 
Integrate over predicted &  
observed densities: 
Bayes Rule 
  



Prior 

Prediction 

Observation 

Update 

t = 1 

t = 2 

Updated prediction becomes 
prior for next time step 
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Estimate biology (γ) 

 Innovation for likelihood function 
 Allows estimation of γ 
 Denominator of Bayes Rule 
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Meta-analysis is required 

 Information combined over 
multiple pathways 

 
 Biological parameters, γ, 
random variables 

 
 

),(~ 2σµγ Ni



 Optimal parameter 
estimation for data-poor paths 

 
 Individual variation inferred 

Meta-analysis is required 



t = 1 
1st location = release point 

 
eg. release location estimated 

with GPS  

Prior 

Prediction 
Apply dynamics (transition eqn) 

Observation Observe a location with error 

Update 
Integrate over predicted &  

observed densities 
(Bayes Rule) 

Prior t = 2 
Updated prediction becomes 

prior for next time step 



Software 

WinBUGS: Bayesian Analysis Using Gibbs Sampling 
 
Bayes Rule 
 
 
 
 
 
http://www.mrc-bsu.cam.ac.uk/bugs/ 
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Mike James  
Andrea Ottensmeyer 



Identification of high-use areas and threats to leatherback sea turtles  
in northern waters 
 
James, Ottensmeyer and Myers 
Ecology Letters (2005) 

What you can do if you 
take Stats 2050  



Leatherback turtles are unique in that they 
expose their pineal spot to sunlight. 



Turtles make more progress south during the day 



 



 



Robust Estimation 

 Does it make sense to have an error distribution 
with infinite variance? 

 The estimated t-distributions sometimes have 
degrees of freedom less than 2, i.e. infinite 
variance.  



 





Photo by Matthew Godfrey 





Weights in Canadian waters  

 
 

• live-captured at sea and turtles  
  Turtles are  
    33% heavier in Canadian coastal  
   areas versus on the nesting  
   beach 

Nesting female morphometrics: St. Croix, U.S.V.I. 
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147. 
Lines fit by constant slope analysis of covariance after log transformation. 
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Male leatherback movements 
 
• not previously described 
 

• annual migratory cycle  
  that includes movement  
  between temperate  
  foraging areas and tropical  
  breeding areas 
 
James, Eckert and Myers  
Marine Biology (in press) 
 
 



• Male residency in nearshore waters off large nesting colonies 
• Location and timing of mating activity not previously known 
• long-term tracking (e.g. 20 months +) reveals fidelity for breeding areas 



Meta-analytic State Space Movement Models 

Ian Jonsen 
Joanna Mills 
Greg Breed 

 
 

 

Capaldi etal. 2000.  
Nature 403:537-540 



• First documented return migrations to foraging areas  
• return migrations to Canada/Northeastern U.S. are annual 
• similar migratory cycle for sub-adults and females in their internesting years 
• modified cycle for mature males and nesting females (nearshore phase in 
  tropical waters) 



Why studying trajectories is an important 
thing to do.  

 



Imperial Mathematician  



Kepler's elliptical orbit for Mars..  

http://www-gap.dcs.st-and.ac.uk/%7Ehistory/Diagrams/Kepler_orbit.gif


Do animals follow Great Circle Routes for long distance 
migration? 



Filtered Data 
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σ1 = 0.21 deg lon 
σ2 = 0.09 deg lat 
 θ  = -0.01 rad 
ρs = 0.61 

Raw data 

State estimates 



Derived Variables 
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Turtles are close to the surface during the  
day during migration 

Night Day 



Meta-analysis of everything 

 Dan Ricard – Meta-analysis of diffusion from MPA’s 
 Scott Sherrill-Mix – Meta-analysis of fisher’s 

behaviour when populations change 
 Andy Edwards and Coilin Minto – Meta-analysis of 

species interactions 
 Julia Baum – Carrying capacity and recovery  

 
 







Source: Myers and Worm 2005.  
Proc. R. Soc. Lond. B 

msy 

There is much less than 10% of cod left -  





Can wild salmonid populations survive salmon aquaculture? 

Jennifer Ford    



Use paired comparisons. 

Source:  Cartoon Guide to Statistics, Larry Gonick & Woolcott Smith 
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There is always a rapid loss of fitness in the wild with hatcheries; after a few generations 
hatchery salmon may be useless for recovery.  



Sharks 
 Christine Ward-Page – Reef sharks 
 Luis Lucifora and Travis Shepherd – world 
 Anna Massa –Argentina 
 Mike Stokesbury – Greenland shark 
 Peter Ward – Central Pacific 
 Julia Baum – Gulf of Mexico 
 Gretchen Fitzgerald – Pelagic species 
 Veronica Garcia – deepwater species 

 
 
 



How do we Estimate of Trends Using Crazy 
Data: 
 
There are few guidelines for students dealing 
with real data 

 Joanna Flemming 
 Dan Kehler 
 Eva Cantonni 
 Leah Gerber 
 Wade Blanchard 



Analysis of old survey 
data from the Gulf of 
Lion (where we only 
have partial data, i.e. 
the  number of positive 
counts) show that 12 
species of sharks and 
rays meet the IUCN 
criterion for 
endangered.  



Hammerhead sharks 

Sphyrna lewini 
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Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm,  
S.J. Harley, P.A. Doherty 
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1 Caribbean      6 NE Coastal 
2 Gulf of Mexico      7 NE Distant 
3 Florida              8 Sargasso 
4 S Atlantic Bight      9 S America 
5 Mid Atlantic Bight 

Hammerhead spp. White Tiger Coastal spp. 

Oceanic whitetip Thresher spp. Mako spp. Blue 



 Data Analysis 
 
  Assume catch follows negative binomial distribution 
  Analyse positives only → zero-truncated distribution  
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Robustness Analyses 
 
Assume reporting rate has stayed constant for:   
 full dataset 
 for a subset of vessels: recorded species at least once 
           recorded species at least once in a 
    given year 
 
Negative binomial models 
 
Delta-lognormal models 
 proportion of positives modelled separately from positives 
 standardized CPUE is the product of the two 



TNB 
NB NB 

NB 



Area, species range, and endemism 

Endemism is explicitly defined by spatial scale. Is there a way to link all these 
diagrams, and can we create a unifying theoretical model? 
 
Can we compare the patterns of endemism between habitats and assess their 
differential vulnerability? 

log(area) log(area) 
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Endemism/species- 
range curves for two 
different habitats  

Steeper than SA-curve 
for continuous habitats 
(Harte & Kinzig, Oikos, 1997)  

Accumulation of 
species with area  



Susanna Fuller  - Deep water sponge conservation 



Florence Berreville – Inverse Modeling 



What was the most common large animal 
(>50 Kg) in the world? (perhaps this one was) 



Loss of sharks in the Gulf of 
Mexico 

300 fold decline – no one noticed 

Oceanic Whitetip captures per 10,000 hooks 
1950’s        1990’s 

Baum and Myers, 2004 Ecology Letters 



Circumstantial 
evidence of oceanic 
whitetip sharks being 
common in the Gulf 
of Mexico 



Fitting a simple 
model to crazy 
data can yield 
reliable, and very 
powerful 
conclusions 



With training, “experts” can ignore the most obvious 
of data: 

1872 - Man's head and leg and dolphin in stomach 
1872 – 8 Great White Sharks reported caught 
1888 - Woman's body and lamb in stomach 
1894 - Preserved at Zagreb Nat. Hist. Mus. 
1926 - Woman's shoes, laundry in stomach 
1946 - Pig of 10 kg in stomach 
1950 - Encounter during eating a dead calf 
1954 - Attack on boat 
1975+ -No sightings. 
                                         Soldo and Jardas, Periodicum Bologorum, 2002 
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Community Changes on St. Pierre Bank 



Loss of haddock on 
the Grand Banks –  
data from research 
surveys 









Hippocratic Oath: 
Modified for Fisheries Biologist by RAM:  

"First, don’t drive 
any population or 
species extinct”. 
 

 
 



Loggerheads 

Leatherbacks 

Lewison et al. 2004 
Ecology Letters 



Hammerhead sharks 

Sphyrna lewini 
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Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm,  
S.J. Harley, P.A. Doherty 
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Same results for trawl surveys in Gulf of Mexico 



Same results for trawl surveys in Gulf of Mexico 



Decline of Mediterranean Sharks 

“Tonnara di Camogli” 

By catch associated with a Tuna Trap 

In Ligurian Sea 



Decline of Hammarhead sharks 

Boero F. & A. Carli 1979 – Boll. Mus. Ist. Biol. Univ. Genoa (47) 

1950 1955 1960 1965 1970 1974

0

1

2

3

4

5

C
at

ch
 p

er
 y

ea
r

Year



“Tonnarella di Baratti” 

By catch associated with a Tuna Trap 
In Tirrenian Sea 

Decline of Mediterranean Sharks 
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http://www.fishbase.org/Photos/PicturesSummary.cfm?ID=4996&what=species
http://www.fishbase.org/Photos/PicturesSummary.cfm?StartRow=2&ID=854&what=species


Stoner, D. S., J. M. Grady, W. B. Driggers, K. A. Priede and J. M. Quattro.  Molecular   
Evidence for a Cryptic Species of Hammerhead Shark (Genus Sphyrna).  Marine 
Biology  (submitted).  

There are at least 2 scalloped hammerhead sharks in  
the Northwest Atlantic 



Proportional reduction in current fishing mortality  
needed to ensure survival of shark populations 

Myers & Worm,  PRSB 2005 































































Totally Stupid Reasons for not Believing the 
Obvious 
 You ignore research surveys.  
 Removing Large Predators Couldn’t Possibly Affect 

Survival of Other Fish. 
 Fishing Couldn’t Possibly Affect the Size of Tuna. 
 Fishermen are so stupid they cannot use satellite data 

to find tuna. 
 Fishermen are so stupid that they don’t improve their 

gear.  



These estimates are conservative: 6 Fishermen are smarter  
(gps, satellite information,  ACDP (Acoustic  

Current Doppler Profiler)). 

However, fish may be a lot smarter too 
(the stupid ones were caught). 

Locations of a leatherback turtle over a two week period tagged by 
my student Mike James that maintains its position within a cold core 
ring (somehow). 



New Materials for 
Fishing Gear  
Double Efficiency  
Results from paired experiment 
M – Monofilament 
B – Multifilament (old gear) 
 
Design, every other gangion 
was monofilament  
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(This approach 
shows that non- 
statistical “habitat 
models” do not 
appear to work: 
results for  
bigeye tuna) 
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Analysis repeated using independent research 
data  
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Ecosystem changes are consistent with a 10  
fold decline in predation 
Key prey species would be predicted to increase by the  
changes in predation rate 



 

Loss of sharks in the Gulf of Mexico 
300 fold decline – no one noticed 

Oceanic Whitetip captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 



What about prey fish? 

Brama brama 
Atlantic pomfret 

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with  

Henry Waszczuk and Italo Labignan, 1995, 

http://www.nature.ca/


Explosion of Pomfrets in the Gulf of Mexico 
~1000 fold increase – no one noticed 

Pomfret captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 



The Rise of the Marine Mesopredators 

Pelagic Sting Ray 
Pteroplatytrygon violacea 

Photos from Phillip Colla, photography 



Explosion of Pelagic Stingrays in the Gulf of Mexico 
~1000 fold increase – no one noticed 

Pelagic stingray captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 
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FMAP (Future of Marine Animal Populations)  
part of the Sloan Census of Life http://www.fmap.ca 
Pew Global Sharks Assessment      http://www.globalsharks.ca 

Not only have large predators declined by at least a fact   
10, but mesopredators have often increased by at least a 
factor of 10.  



The First Collective Act of  
Humanity was to save the  
great whales – 
  
despite massive denial 
 
– we can do 
the same for the remaining 
virgin areas of the oceans  
and for the great sharks. 



Is shrimp trawling driving sharks and rays extinct? 
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Shallow species are going extinct 
Deep species are increasing 



(1)Friedlander & DeMartini (2002): Hawaiian reefs;  
(2) Jennings & Blanchard (2004): North Sea;  
(3) Christensen et al. (2003): North Atlantic; 
(4) Myers & Worm (2003): global;  
(5) Ward & Myers (2003): North Pacific;  
(6) Tang et al. (2003): Bohai Sea;  
(7) Baum & Myers (2004): Gulf of Mexico; 
 (8) Vacchi et al. (2000): Mediterranean Sea;  
(9) Baum et al. (2003): Northwest Atlantic.  

Source: Myers and Worm 2005.  
Proc. R. Soc. Lond. B (2005) 



FMAP (Future of Marine Animal Populations)  
part of the Sloan Census of Life http://www.fmap.ca 
Pew Global Sharks Assessment      http://www.globalsharks.ca 

Not only have large predators declined by at least a fact   
10, but mesopredators have often increased by at least a 
factor of 10.  



Single species models are not even remotely consistent with the data, e.g.  
Swordfish from the South Atlantic 



White Marlin: Atlantic, single species models do not work 
Very well. 



ICCAT shark assessments in the Atlantic don’t even remotely fit reliable data: 
Similar pattern for US government research surveys. 







Bluefine tuna (observed diamonds) and modeled – not a very good  
fit.  



Common patterns of decline 

Myers and 
  Worm (2003) 
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RED HERRING 1: RATIO ESTIMATION 



RED HERRING 2: SPATIAL ESTIMATION 

 



Scenario A  
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True population 
Abundance estimate from CPUE 
Abundance estimate, Walters’ method 
Spatial estimate, Myers and Worm’s method 
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True population 
Abundance estimate from CPUE 
Abundance estimate, Walters’ method 



These estimates are  
conservative: 1. 

Bits of tuna did not count; 
~25-30% of tropical tunas were  
initially not counted because of  
shark damage. 



These estimates are conservative: 2 (fish are 
smaller) 
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Yellowfin tuna – equitorial Pacific 
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The estimates are conservative 3: you can 
only catch one fish on a hook. 



These estimates are conservative 
4: The sharks probably declined 

more. 

Oceanic Whitetip captures per 10,000 hooks 
1950’s        1990’s 

Baum and Myers, submitted to Ecology Letters 



These estimates are conservative 5: The 
oceans were not virgin.  

 Japan harvested ~1,000,000 tons of tuna and 
marlin in the 5 years before WWII.  

 In 1950 the US harvested ~170,000 tons.  
 The 1950  harvest of albacore by Spain was 

greater than the  total recent harvest in the North 
Atlantic. 

 Species that migrate long distances (e.g. southern 
bluefin tuna, northern bluefin tuna, and albacore) 
would have reduced by these harvests.  
 



These estimates are conservative 7:  
changes in depth increases overall efficiency. 

Ward and Myers in press 
CJFAS 



Declines confirmed by independent data: 

 The initial high catch rates were seen in early 
research surveys by Japan and US. 

 Declines seen in harpoon fisheries for swordfish and 
tuna. 

 Most tuna traps in the Mediterranean have largely 
been abandoned, Italy there is a decline from 100 to 
3 tuna traps. 

 Complete loss of species in some areas. 
 
 





Perceived Contradiction in Initial Rapid 
Decline in CPUE  

 1. Large declines occurred when effort was 
relatively small 



Perceived Contradiction in Initial Rapid 
Decline in CPUE  

2. Present effort is much higher.  



Perceived Contradiction in Initial Rapid 
Decline in CPUE  

3. Present fishing mortality due to longlines is 
around 0.6  



Perceived Contradiction in Initial Rapid 
Decline in CPUE  

IF catchability is constant  
THEN the population dynamics are impossible.  
 
However, catchability decreases with size and size 

has declined 
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A Toy Model 

 Recruitment constant 
 Longline effort increases linearly over 35 years 
 Catchability is proportional to the product of: (a) a 

cumulative normal and (b) food intake (respiration 
is proportional to the 2/3’s power of mass) 

 Present fishing mortality is around 0.6. 



CPUE Avge wt 

Year Ages 

Catch Selectivity Length 





Conclusion 

 Immediate action  needed to protect some sharks, 
leatherbacks, loggerheads, and some tuna 
(Atlantic northern bluefin) 

 Productivity (juvenile survival) has increased with 
exploitation. 

 Rapid declines in CPUE reflect real declines in 
large fish 

 Reduced effort is needed to achieve greater 
economic yield 
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Rapid decline in older albacore.  





  

Marine ecosystem robustness and the collaps   
marine fisheries  

Ransom A. Myers (RAM) 
Dalhousie University, Halifax, 
Canada 



One hypothesis: 
Fishing mortality 

Predation on sailfish juveniles 

Survivorship of sailfish juveniles 

Sailfish population 



Collapse and Conservation of Shark 
Populations in the Northwest Atlantic 

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm,  
S.J. Harley, P.A. Doherty 



Longitude 
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             7 
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U.S. Atlantic pelagic longline sets 1986-2000 



Political action is 
costly for any 
scientist.  
  
However, it also 
has great benefits.  
 
To act is to live.  
 
To be suppressed 
is to die.  



Hammerhead sharks 

Sphyrna lewini 
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Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty 



  

  



The rest of the slides are back up.  





Thresher 
sharks 

Alopias spp. 



Blue sharks 

Prionace glauca 



Proportional reduction in current fishing mortality  
needed to ensure survival of shark populations 



Letter from senate 

 



Decline of Mako 
sharks 

Boero F. & A. Carli 1979 – Boll. Mus. Ist. Biol. Univ. Genoa (47) 
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These estimates are conservative: 1. 

Bits of tuna did not count; 
~25-30% of tropical tunas were initially  
not counted because of shark damage. 



These estimates are conservative: 2 (fish are 
smaller) 
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Yellowfin tuna – equitorial Pacific 
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The estimates are conservative 3: you can 
only catch one fish on a hook. 



These estimates are conservative 5: The 
oceans were not virgin.  

 Japan harvested ~1,000,000 tons of tuna and 
marlin in the 5 years before WWII.  

 In 1950 the US harvested ~170,000 tons.  
 The 1950  harvest of albacore by Spain was 

greater than the  total recent harvest in the North 
Atlantic. 

 Species that migrate long distances (e.g. southern 
bluefin tuna, northern bluefin tuna, and albacore) 
would have reduced by these harvests.  
 



These estimates are conservative: 6 Fishermen are smarter  
(gps, satellite information,  ACDP (Acoustic  

Current Doppler Profiler)). 

However, fish may be a lot smarter too 
(the stupid ones were caught). 

Locations of a leatherback turtle over a two week period tagged by 
my student Mike James that maintains its position within a cold core 
ring (somehow). 



Step 8: You need emotional support. Support from colleagues and 
family is essential. You cannot do it (for long) by yourself. 
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Why is it so important.  
What makes them work.  

 



Shelf seas 



Government science was consistently wrong, and there was no 
effective voice from universities. 



Lessons I Learned from the Cod Disaster: 

 Government constrained scientists may consistently ignore 
what the data tells them.  

 Independence is key. 
 Multiple, independent analyses are crucial; or else you will be 

dismissed.  
 Speak clearly and honestly to the press, the politicians must 

know that someone is watching. 
 Be proactive, once an animal is ecologically extinct it is too 

late. 





RAM’s 12 step plan: From hard core math weenie 
to passionate conservationist: A PERSONAL 
ODYSSEY. 

 

  

Reaching the heart through mathematics.  



Final point: keep fighting, keep hoping! 
This happened last week: Oceanic Whitetip 
declared critically endangered by ICUN 
 Last year is was “species of least concern”. 
 This change was not because we published one paper in Science, but papers 

based upon 3 independent datasets (plus 2 math/stats technical papers).  
 Skeptics remain – more analyses are in prep from scuba surveys of jellyfish 

( one notices large sharks while diving in the clear open ocean. 



Conclusion: The Factor of 10 Hypothesis 

 Scientific investigations of marine fish stocks almost 
always begin after the fact. 

 Here we compile data from which the size of the 
community of large predatory fishes can be estimated.   

 New fisheries tend to deplete the biomass of large 
predators by at least a factor of 10 . 

 These declines happen very rapidly, usually in a decade or 
less. 
 
 



Figure stolen from Paul Anderson  



 The Good - 
 Ban directed fisheries on sharks. 
 Control fishing on skates.  
 Keep a watch on bycatch. 

 
 The Alaska Board of Fisheries prohibited all directed 

fisheries for sharks in 1998. In Southeast the bycatch rate 
for sharks and skates taken during other longline fisheries 
is 35% of the target species. 
 
 







All large sharks declined 



Shallow water species that do not survive 
discarding: large declines: 



Are the pleistocene  
extinctions* going to 
be repeated in the 
ocean? 

*Present North American 
biota has lost almost all large 
species –  
We have no mammoths, 
mastodons, giant ground 
sloths, giant beavers, and 65 
other species that weighted 
more than 100 kilograms.  



Deeper skate species that survive discarding 
increased 





Spiny Dogfish, Northwest Atlantic: Good Science – Ugly Decisions  



Danish Landings of Bluefin Tuna 
  Thunnus thynnus 

Data source: DIFRES, ICES, FAO 
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Landings of Bluefin Tuna 
  Thunnus thynnus in Northern Europe* 
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Landings of Bluefin Tuna 
  Thunnus thynnus in Northeast Atlantic 
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Hauser, et al. PNAS, 2002 









Life history of sharks… 

  
Bony fish 

Sharks 

Mammals 



 We Cannot Imagine the Loss of Life in the 
Ocean: We have to look at data. 

Ransom A. Myers (RAM) 
Dalhousie University, Halifax, 
Canada 



Decline of Mako sharks 

Boero F. & A. Carli 1979 – Boll. Mus. Ist. Biol. Univ. Genoa (47) 
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Thresher 
sharks 

Alopias spp. 



Blue sharks 

Prionace glauca 



1 Caribbean      6 NE Coastal 
2 Gulf of Mexico      7 NE Distant 
3 Florida              8 Sargasso 
4 S Atlantic Bight      9 S America 
5 Mid Atlantic Bight 

Hammerhead spp. White Tiger Coastal spp. 

Oceanic whitetip Thresher spp. Mako spp. Blue 
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Decline of Thresher sharks 

Boero F. & A. Carli 1979 – Boll. Mus. Ist. Biol. Univ. Genoa (47) 
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Decline in Large Sharks’s Catches by an Italian Tuna Trap 

Baratti’s “Tonnarella”  

Vacchi M. et al. 2000 - 4th-Meeting-of-the-European-Elasmobranch-Association-Proceedings 
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