Objectives:

e Motivation for the use of logistic regression
for the analysis of binary response data.

e Review of simple linear regression and why
It is inappropriate for binary response data.

e Curvilinear response model and the logit
transformation.



 Beyond Traditional Statistical Methods
Copyright 2000 D. Cook, P. Dixon, W. M.
Duckworth, M. S. Kaiser, K. Koehler, W.
Q. Meeker and W. R. Stephenson.



Objectives:

e [ he use of maximum likelihood methods
to perform logistic regression.

e Assessing the fit of a logistic regression
model.

e Determining the significance of explana-
tory variables.



Motivating Examples

T he Challenger disaster

The sex of turtles

BronchoPulmonary Dysplasia (BPD) in new-
borns

College Mathematics placement/grades in
a statistics class

Credit card scoring/Market segmentation



T he Challenger disaster

e On January 28, 1986 the space shuttle,
Challenger, had a catastrophic failure due
to burn through of an O-ring seal at a joint
iIn one of the solid-fuel rocket boosters.

e Of 24 previous shuttle flights
— 7 had incidents of damage to joints
— 16 had no incidents of damage

— 1 was unknown (booster not recovered
after launch)



T he Challenger disaster

e Could damage to solid-rocket booster field
joints be related to cold weather at the
time of launch?

e [ he following plot is derived from data
from the Presidential Commission on the
Space Shuttle Challenger Accident (1986).
A 1 represents damage to field joints, and
a 0 represents no damage.



T he Challenger disaster

Incidence of Booster Field Joint Damage vs. Temperature
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T he Challenger disaster

e Incidence of joint damage

_ Y A 0
overall: 53 = 30%

N

— temperature < 659F: 7 = 100%
— temperature > 65°F: = = 16%

e IS there some way to predict the chance of
booster field joint damage given the tem-

perature at launch?



library(faraway)

orings

oringsp=orings
oringsp$b<-orings$Total
oringsp$b[1]<-1

glm.out<glm(b~temp,data=oringsp,family=
binomial)



e glm.out<-
glm(b~Temperature,data=oringsp,family=bino
mial)

e summary(glm.out)



Call:
glm(formula = b ~ Temperature, family = binomial, data = oringsp)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0611 -0.7613 -0.3783 0.4524 2.2175

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 15.0429 7.3786 2.039 0.0415*
Temperature -0.2322 0.1082 -2.145 0.0320*

Signif. codes: 0 ***' 0.001 **' 0.01 *' 0.05'.'0.1"''1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 28.267 on 22 degrees of freedom
Residual deviance: 20.315 on 21 degrees of freedom

AIC: 24.315

Number of Fisher Scoring iterations: 5



» plot(b~Temperature,data=oringsp,ylab="0
-Ring Damage”)

 lines(orings$Temperature,predict(gim.out,t
ype="response"))
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T he sex of turtles

e [ hisexample comes from a consulting project
that Dr. Ken Koehler, ISU worked on.

e \What determines the sex (male or female)
of turtles?
— Genetics?

— Environment?



T he sex of turtles
e [ he following experiment was conducted
with turtle eggs collected in the wild.

— Turtle eggs (all of one species) are col-
lected in Illinois.

— Several eggs are put into boxes.

— Boxes are incubated at different tem-
peratures.

— When turtles hatch, their sex is deter-
mined.



T he sex of turtles

Temp male female 9% male || Temp male female 9% male
1 9 10% 7 3 70%
27.2 0 o 0% 28.4 5 3 63%
1 3 11% 7 2 78%
7 3 70% 10 1 01
27.7 4 2 67% 29.9 3 0 100%
6 2 5% 9 0 100%
13 0 100%
28.3 6 3 67%
7 1 88%




T he sex of turtles

e Proportion of male turtles for various tem-
perature groups

_ .9
overall: i3

— temperature < 27.5°C"
— temperature < 28.0°C"
— temperature < 28.5°C":

— temperature < 30.0°C":

1
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0.67

4 = 0.08
19 =0.37
2 = 0.59
e = 0.67
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T he sex of turtles

Proportion of male turtles vs. incubation temperature
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T he sex of turtles

e IS there some way to predict the propor-
tion of male turtles given the incubation
temperature?

e At what temperature will you get a 50:50
split of males and females?



data(turtle)
temp male female

1272 1 9
2 272 0 8
3272 1 8
4 27/.7 1 3
5 27.7 4 2
6 27.7 6 2
/7283 13 O
8 283 6 3
9283 7 1
10284 7 3
11284 5 3
12284 7 2
13299 10 1
14299 8 O
15299 9 O



BPD in nhewborns

e [ hisexample comes from Biostatistics Case-
book, by Rupert Miller, et. al., (1980),
John Wiley & Sons, New York.

e [ he data we will look at Is a subset of a
larger set of data presented in the case-
booK.



BPD In newborns

e Bronchopulmonary dysplasia (BPD) is a de-
terioration of the lung tissue.

e Evidence of BPD is given by scars on the
lung as seen on a chest X-ray or from direct
examination of lung tissue at death.



BPD in newborns

e WWho gets BPD?

— T hose with respiratory distress syndrome
(RDS) and oxygen therapy.

— Those without RDS but who have got-
ten high levels of oxygen for some other
reason.



BPD in nhewborns

e Response: BPD or no BPD (a binary re-
sponse).

e Predictors: Hours of exposure to different
levels of oxygen, O-.
— Low (21 to 39% O»).
— Medium (40 to 79% O»).
— High (80 to 100% O»).
e [he natural logarithm of the number of

hours of exposure, InL, InM and InH are
used to model the response.



BPD In newborns

e [S there some way to predict the chance
of developing BPD given the hours (or the
natural logarithm of hours) of exposure to
various levels of oxygen?

e Do the different levels of oxygen have dif-

fering effects on the chance of developing
BPD?



Other examples

e College mathematics placement: Use ACT
or SAT scores to predict whether individu-
als would receive a grade of C or better in
an entry level mathematics course and so
should be placed in a higher level mathe-
matics course.

e Grades in a statistics course: Do things
like interest in the course, feeling of pres-
sure/stress and gender related to the grade
(A, B, C, D, or F) one earns in a course?



Other examples

e Credit card scoring: Use various demographic
and credit history variables to predict if in-
dividuals will be good or bad credit risks.

e Market segmentation: Use various demo-
graphic and purchasing information to pre-
dict if individuals will purchase from a cat-

alog sent to their home.



Common Aspects

e All have a binary (or categorical) response:
— damage/no damage.
— male/female.

— BPD/no BPD.

e All involve the idea of prediction of a chance,
probability, proportion or percentage.

e Unlike other prediction situations, the re-
sponse is bounded.



Logistic Regression

e | Ogistic regression is a statistical technique
that can be used in binary response prob-
lems.

e It is different from ordinary least squares
regression although there are similarities.

e [t is important to recognize the similari-
ties and differences between the two tech-
niques (logistic regression and ordinary re-
gression).



Simple Linear Regression:
e Review of ordinary least squares simple lin-
ear regression.
— Data

— Model

« Structure on the means.

« Error structure.



Simple Linear Regression:

e Data

— Response, Y: numerical (continuous mea-
surement).

— Predictor, X: numerical (continuous mea-
surement).

e Model

— The mean response is a simple linear
function of the predictor variable.

— Individual responses vary around the mean.



Simple Linear Regression:

e Model:

Y = Bo 31X €

e; ~ N(0,02)



Simple Linear Regression:

e NModel:

— Structure on the means

E(Yi|1X5) = Bo 4 51X,

— Error structure

e. ~ N(0,c2)
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Challenger disaster

e Binary response:
—-Y, =1 damage to field joint

— Y, =0 no damage to field joint

e Probability:
— Prob(Y;, =1) = =,

— Prob(Y;
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Binary response

e In general

E(Y;)) =0x(1—m)+ 1xm=m

e With predictor variable, X;

E(Y;| X)) = 6o+ P11 Xi=m (1)



Simple Linear Regression?

e Constraint on the response

0 < B(Y;|X;) =m <1

e Non-constant variance
Var(e;)) = Var(Y;) = mi(1 — m;)

— the variance depends on the value of X;.



Simple Linear Regression?

e Non-Normal error terms

e = Yi— (Bo + 81X;)

—when Y; = 1
e, =1 — (8o + 81X;)
— when Yz =0



Use SLR anyway

e Challenger disaster

— SLR prediction equation

e

Y = 2.905 - 0.0374X

s

« for X =77 Y = 0.025

s

* for X = 65 Y =0.474

s

x for X = 51 Y = 0.998



Fitted line plot

SLR of Joint Damage vs. Temperature
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Plot of residuals

Challenger Disaster
Plot of Residuals from SLR
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SLR anyway

e \When we use ordinary least squares to fit a
simple linear regression model we will get
unbiased estimates of the regression pa-
rameters (intercept and slope).

e Since we are violating the equal variance
assumption, the standard errors for these
estimates will be larger.

e [ he unusual pattern in the residuals indi-
cates that the simple linear model is not
capturing the pattern in the response.



Weighted Least Squares

e [0 overcome the unequal variances, we can
weight the observations by the inverse of
the variance.

L — 1
Vi )

e Since w; iIs not known, we need to use es-
timated weights

o 1
A (TG )




Weighted Least Squares

e Fit Ordinary Least Squares (simple linear
model)

o

— ODbtain estimates, Y;

— If an estimate is less than O or more than
1, set it to 0.001 or 0.999, respectively.

— Compute weights, w;

e Fit Weighted Least Squares (simple linear
model)



Challenger disaster

e Ordinary Least Squares (simple linear model)

Coefficient Estimate Std Error
Intercept 2.905 0.8421
Slope —0.0374 0.0120

e Weighted Least Squares (simple linear model)

Coefficient Estimate Std Error
Intercept 2.344 0.5324
Slope —0.0295 0.0067




Comments

Weighted least squares reduces the stan-
dard errors of the estimated parameters
(intercept and slope).

Weighted least squares does not affect the
lack of normality for the errors.

Weighted least squares does not address

the possibility that fitted responses can fall
below zero or above one.

A curvilinear response function is a more
appropriate model than a simple linear re-
lationship between predictor and response.



Curvilinear model

e When the response variable is binary, or a
binomial proportion, the expected response
IS more appropriately modeled by some curved
relationship with the predictor variable.

e One such curved relationship is given by

the logistic model
o (BoF531X)) )

B(Y|X;) = mi =



Response, Y

Logistic model
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Logistic model

e [ he logit transformation.

wg:m( i ):,30+,31X3- (3)

]_—’ﬂ'z'

e Estimate m; by p;, the observed proportion,
and apply the logit transformation.

n (1)



T he sex of turtles

e Combined data

Temp male female total pmale, p;
27.2 2 25 27 0.0741
27.7 17 7 24  0.7083
28.3 26 4 30 0.8667
28.4 19 3 27 0.7037
29.9 27 1 28 0.9643



T he sex of turtles

e Ordinary least squares linear model on the

raw proportions

T = —6.902+4 0.2673Temp (4)

Temp 27.2 27.7 28.3 28.4 29.9
Fit prop., # 0.369 0.503 0.663 0.690 1.091

e Note that the ordinary least squares linear
model on the raw proportions gives a fitted
values that is above 1.



T he sex of turtles

SLR of proportion male on incubation temperature

Y = -6.90211 + 0.267333X
R-Sq=61.3%
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T he sex of turtles

e Combined data

Temp pmale, p; In (%)

— Pi

27.2 0.0741 —2.5257
27.7 0.7083 0.8873
28.3 0.8667 1.8718
28.4 0.7037 0.8650
29.9 0.9643 3.2958



T he sex of turtles

e Ordinary least squares on the logit trans-

formed proportions

7' = -51.1116 4+ 1.8371Temp (5)

Temp 27.2 27.7 23.3 28.4 29.9
Fit logit, #* —1.1420 —-0.2334 0.8788 1.0626 3.8182
Fit prop., @ 0.242 0.444 0.707 0.743 0.979



logit

T he sex of turtles

SLR of logit{pmale) on incubation temperature

¥ =-51.1193 + 1. 83738X
R-Sq=759%




Proportion Male
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T he sex of turtles

e emperature to give a 50:50 split

— Ordinary least squares linear model on
proportions.

x* A temperature of 27.69°C" will give a
predicted proportion male of 0.50.

— Ordinary least squares linear model on
the logit transformed proportions.

+* A temperature of 27.82°9C" will give a
predicted proportion male of 0.50.



Comments

e [ he logit transformation has adjusted for
the curved nature of the response. With
the linear model on the logit transformed
proportions we will not get predicted values
less than zero or greater than one.

e [ here is, however, still the problem of un-
equal variances and non-normal errors.



Comments

e By doing ordinary least squares we are try-
iIng to force binary response data into a
familiar method of analysis.

e \What we really need is a new way of look-
iIng at this problem and a new means of
analyzing the data.



Likelihood

e T he likelihood function is a function of the
data and the parameters of the model. We
maximize the likelihood by finding estimates
of the model parameters that are most likely
to give us the data.

e With binary response the form of the like-
lihood function is relatively simple.



Likelihood

e For the binary response
— Y, = 1 with probability m;

— Y; = 0 with probability 1 — ;

e [ he general form of the likelihood function
S

Ti
L((Bo.f1); Data) = [[ = i(1 — =) Yi (6)

1=1



Likelihood

With a logistic model the probability, m;,
IS a curvilinear function of the explanatory
variable, X, given by

o E(J@"‘le }&rz)
ﬂ-ﬁ - 1_|_t(‘15;j+151)§:3)

and




Likelihood

L((3o,81); Data) =

T SBetBiX) O\ 1 1Y,
o H 1 + e {i-:?'-::-+i.3'1'1 Xy } 1 + e (-':fg—l—.':fl _Tz_;l

i=1

n (E{ﬂo—hﬁi.‘{}})m

N ]‘__‘[ (1 + E(i'ﬂa+i'i1.’f-f}) (7)




Log Likelihood

It is often easier to work with the natural

ogarithm of the likelihood function, the log
ikelihood.

hirs
log [L((Bo, 31); Data)] = Z}@(,@ﬁ,ﬂlxé)

i=1

e
_ Zfﬂg [1 4 (At AX0] (8)
i=1



Maximum Likelihood

e Choose 3, and (31 so as to maximize the
log likelihood. These choices will also max-
imize the likelihood.

e Similar to ordinary least squares, we will
obtain two equations with two unknowns
(3o and 3q).

e Unlike ordinary least squares, the equations
are not linear and so must be solved by
iteration (start with initial values for 3, and
31, evaluate the log likelihood, choose a
new value for 3, or 31 that reduces the |log
likelihood, repeat until the log likelihood
does not change).



Splus

e General Linear Model

— family=Dbinomial

x uses the binomial (binary response)
likelihood function as given on slide
32.

— link=logit

x uses the logistic model as given on
slide 33.



T he sex of turtles

e Splus logistic regression on combined turtle

data

Temp 27.2 27.7 28.3 28.4 29.9
Fit logit, #* —1.1791 —0.0736 1.2530 1.4741 4.7906
Fit prop., © 0.235 0.482 0.778 0.814 0.992



data(turtle)
turtle$n<-turtle$male+turtle$female

glm.turtle<-
glm((male/n)~temp,weights=n,family=bino
mial,data=turtle)

summary(gim.turtle)



Call:
glm(formula = (male/n) ~ temp, family = binomial, data = turtle,
weights = n)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.0721 -1.0291 -0.2714 0.8087 2.5550

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -61.3183 12.0224 -5.100 3.39e-07 ***
temp 2.2110 0.4309 5.1322.87e-07 ***

Signif. codes: 0 ***' 0.001**' 0.01* 0.05"'."0.1"''1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 74.508 on 14 degrees of freedom
Residual deviance: 24.942 on 13 degrees of freedom

AIC: 53.836

Number of Fisher Scoring iterations: 5



Proportion Male

Splus: glm(binomial,logit)
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Comments

e When p; equals O or 1, use

o — L oo — 1 1
p3_2nz~ orp; =1 2n;

respectively.

e Some computer programs may adjust all p;
by some small amount, e.q.

| (0.5—p;)

? T



Comments

e Different computer programs may use dif-
ferent adjustments, starting values, round
off, and algorithms than Splus. Even within
Splus there is more than one way to run
glm. Below are the fits for various pro-
grams for the combined turtle data.

— Splus: 7, = —61.31828 + 2.21103X;
or mw = —61.318299 4 2.211031X;

— Minitab: 'rrg = —61.3242.2110X;

— SAS: 7, = —61.3183 4 2.2110X;



Interpretation of results

e [ he coefficients in a logistic regression are
often difficult to interpret because the ef-
fect of increasing X by one unit varies de-
pending on where X is. This is the essence
of a nonlinear model.

e Consider first the interpretation of the odds:

T

(1—m;)

If m; = 0.75, then the odds of getting a
male turtle are 3 to 1. That is, a male
turtle is 3 times as likely as a female turtle.



Interpretation of results

e In logistic regression we model the log-
odds. The predicted log-odds, -Frg are given
by the linear equation given in slide 38.

e [ he predicted odds are

1}
D Sy
=

\
-

-
o

e If we increase X; by 1 unit, we multiply the
predicted odds by e’1.



Interpretation of results

e At 279 C the predicted odds for a male
turtle are 0.20, about 1 in 5. That is, it is
5 times more likely to get a female than a
male at this temperature.

e At 28¢ C the predicted odds for a male are
¢2:2110 — 9 125 times the odds at 27° C, or
1.825. At 289 C getting a male is almost
twice as likely as getting a female.

e At 29?9 C the predicted odds for a male are
e2-2110 — 9 125 times the odds at 28° C,
or 16.65. At 299 C getting a male is over
16 times more likely than getting a female.



Interpretation of results

e [ he intercept can be thought of as the
predicted log-odds when X; is zero. The
anti-log of the intercept may have some
meaning as a baseline odds, especially if
zero is within the range of the data for the
predictor variable, X.

e In the turtle example, all data comes from
temperatures, values or X, between 279 C
and 30° C. The values X = 0 is well out-
side the range of the data. In the turtle
example, the intercept, or the anti-log of
the intercept, has no practical interpreta-
tion.



Inference

e SO far we have only looked at the fitting
of a model by estimating parameters using
maximum likelihood techniques.

e Estimates of model parameters are subject
to variation.

e \We must be able to quantify this variation
In order to make inferences; tests of hy-
potheses and confidence intervals for model
parameters.



Inference

e [esting hypotheses

— Is there a statistically significant rela-
tionship between the predictor variable
and the binary response?

— Is the logistic model a good fit for the
binary response data or is there a sta-

tistically significant lack of fit?
e Confidence intervals

— Confidence intervals for the model pa-
rameters.

— Confidence intervals for the predicted
proportions.



A word of caution

e Inference techniques for logistic regression
appear to be similar to, or at least analo-
gous to, inference techniques for ordinary
least squares regression with a linear model.

e Inference for logistic regression is based on
asymptotic theory. That is, the inference
techniques are approximate with the ap-
proximations getting better when you have
larger amounts of data (larger sample sizes).



Inference for logistic regression

e Just as with ordinary least squares regres-
sion we need some means of determining
the significance of the estimates of the model
parameters. We also need a means of as-
sessing the fit, or lack of fit, of the logistic
model.

e Inference for logistic regression is often based
on the deviance (also known as the residual
deviance).

e [ he deviance is twice the log-likelihood ra-
tio statistic.



Inference for logistic regression

e [ he deviance for a logistic model can be
likened to the residual sum of squares in or-
dinary least squares regression for the linear
model.

e [ he smaller the deviance the better the fit
of the logistic model.

e A large value for the deviance is an indica-
tion that there is a significant lack of fit for
the logistic model and some other model
may be more appropriate.



Inference for logistic regression

e [ he deviance can be compared to a chi-
square distribution, which approximates the
distribution of the deviance.

e [ he degrees of freedom is determined by
the number of observations and the num-
ber of parameters in the model that are
estimated.

df = n - # parameters estimated



T he sex of turtles

The residual deviance for the logistic model
fit to the combined turtle data is 14.863 on
3 degrees of freedom.

The P-value, the chance that a ;(2 with
3 degrees of freedom exceeds 14.863, is
0.00109.

There is a significant lack of fit with the
logistic model.

Thereisroom for improvement in the model.



T he sex of turtles

e \WWhat went wrong?

— It could be that the dip in the number
of males at 28.4° C compared to the
number of males at 28.3° C is causing
the logistic model not to fit well.

— It could be that the curvilinear relation-
ship between temperature and the pro-
portion of male turtles is not symmet-
ric. The logistic model is symmetric in
Its rise and then leveling off.



Significance of temperature?

e Although there is some lack of fit with the
logistic model, does temperature and the
logistic model give us statistically signifi-
cant information about proportion of male
turtles?

e We need to be able to measure if we are
doing better predicting the proportion of
male turtles using temperature and the lo-
gistic model than if were to make predic-
tions ignoring the temperature.



Null Deviance

e [ he null deviance summarizes the fit of a
logistic model that just includes an inter-
cept.

E,ﬁ(}
¢ 14efo

e Such a model would predict a constant
value for the response proportion regard-
less of the value of the predictor variable,

e By looking at the change in the deviance
when a predictor variable is added, we can
determine whether or not that predictor
variable is adding significantly to the pre-
dictive ability of the model.



Change in Deviance

e [ he difference between the null deviance
and the residual deviance represents the ef-
fect of adding a predictor variable to the
logistic model.

e [ he change in deviance can be compared
to a y2 distribution to determine statistical
significance.

e The degrees of freedom for the y2 is equal
to the number of predictor variables added
to the model, in this case, 1.



T he sex of turtles

e Null deviance (model with a constant pro-
portion of males)
— 64.4285 on 4 degrees of freedom

e Residual deviance (logistic model relating
proportion of males to temperature)
— 14.8630 on 3 degrees of freedom

e Change in deviance ("“Importance” of tem-
perature in the logistic model)

— 49.5655 on 1 degrees of freedom



T he sex of turtles

e Comparing the change in deviance, 49.5655,
to a XQ with 1 degree of freedom, the P-
value is virtually zero.

e [ his change in deviance is not attributable
to chance alone, rather including tempera-
ture in the logistic model is adding signifi-
cantly to your ability to predict the propor-
tion of male turtles.



Summary

e [emperature is statistically significant in
the logistic regression model for the sex of
turtles. Using temperature and the fitted
logistic model will give you better predic-
tions for the proportion of males than using
a constant proportion as your prediction.

e Although the logistic model using temper-
ature is better than a constant proportion
model, it may not give the best predictions.
There is a significant lack of fit for the
logistic model. This indicates that other
curvilinear models may provide a better fit.



Comment

e [ he analysis we have done is on the com-
bined data. Combining the three separate
observations at each temperature into one
IS analogous to averaging observations in
ordinary least squares linear regression.

e \We can do logistic regression on the 15,
three for each temperature, separate ob-
servations. The equation of the fitted lo-
gistic regression will be the same, however
the deviances and degrees of freedom will
change.

e [ he conclusions for this analysis are similar
to those for the analysis of the combined
data.



Alternative inference

e An alternative to the change in deviance
for determining statistical significance of
predictor variables in logistic regression is
given by an approximate z-test statistic.

estimated parameter
standard error

o~
~
o

e [ his z-test statistic has an approximate
standard normal distribution for large sam-
ples.



Connection

e For very large samples (an asymptotic re-
sult) the change in deviance and the square
of the z-test statistic should give approxi-
mately the same value.

e In small to moderate size samples, the two
statistics can give different results.

e \When in doubt, use the change in deviance.



T he sex of turtles

e zZ-test statistic

e Square of the z-test statistic

— 22 =(5.13)% = 26.32

e Change in deviance

— 49.57



T he sex of turtles

e Both the z-test statistic and the change
IN deviance indicate that temperature is
highly significant.

e Sample sizes for the combined turtle data
are moderate, between 25 and 30 for each
temperature.

e [ he P-values derived from either test will
be approximate, at best.



Multiple Logistic Regression

e Often we have several predictor variables
with a binary response.

e [ he ideas of logistic regression can be ex-
tended to the case with multiple predictor
variables.

e As with multiple linear regression, we must
be aware of problems introduced by multi-
collinearity (correlated predictor variables).



Multiple Logistic Regression

e [ he general multiple logistic regression equa-

tion

A

"

e (Ij_'j-fg RE *j]_ X 1i RE 1_32 }5:21,' +...+ 15;{.)5: L )

1+ e(Po
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Bronco Pulmonary Dysplasia

e Response: 1 if bronco pulmonary dysplasia
(BPD) is present, 0 if BPD is absent.

e Predictors: the number of hours of expo-
sure to Low, Medium and High levels of O».
Since these numbers are quite spread out,
a log transformation is used. Since some
values are zero, the log transformation is
applied to the number of hours plus 1.



BPD: One predictor at a time

Single predictor: InL=In(Low + 1)

= —1.9193 4 0.3822InL

Null deviance: 50.4465, df = 39

Residual deviance: 42.4022, df = 38

Change in deviance: 8.0443, df = 1, P-
value = 0.005



BPD: One predictor at a time

Single predictor: InM=In(Medium 4+ 1)

5%;’ = —4.8411 4+ 0.9103InM
Null deviance: 50.4465, df = 39
Residual deviance: 34.1814, df = 38

Change in deviance: 16.2651, df = 1, P-
value = 0.000



BPD: One predictor at a time

Single predictor: InH=In(High + 1)

%,j = —55.6682 4+ 11.0679InH
Null deviance: 50.4465, df = 39
Residual deviance: 10.0584, df = 38

Change in deviance: 40.3881, df = 1, P-
value = 0.000



BPD: One predictor at a time

e [ he single best predictor is InH=In(High
+ 1). This results in the largest change
In deviance, leaving the smallest residual
deviance.

e Does adding a variable to the single pre-
dictor models improve the overall fit of the
model; reduce the residual deviance signif-
icantly?

e \We can talk about various selection proce-
dures, such as forward selection and back-
ward selection.



Model Selection Procedures

Forward selection: add variables one by
one

Backward selection: delete variables one by
one

Stepwise selection: add/delete variables

All possible models



Forward selection

e Start with a null (intercept only) model
and add terms one at a time looking at
the change in deviance to see if adding the
term has caused a significant change.

e [ he final model can depend on the order
of the variables entered.

— Forward selection entering InL first.

— Forward selection entering InH first.



Forward selection, InL entered first

Model Deviance Change P-value
N ull 50.4465

nL 42.4022 8.0443 0.005
nL 4+ InM 34.0134 8.3888 0.004
nL + InM -+ InH 1.34090 32.6725 0.000

The final model contains all three variables.
Each variable, when added, reduced the resid-

ual deviance significantly.



Splus
e [he anova() command in Splus will sum-
marize the sequential addition of terms.
— > attach(bpd)

— > bpd.logistic.full < —
agm(BPD ~ InL4+InM+4InH,family=binomial)

— > anova(bpd.logistic.full, test="Chisq" )

Note that in this command, InL will be
added first, InM second and InH last.



> stepAlC(bpd2)
Start: AIC=8
BPD ~ InH + InL + InM

Df Deviance AIC
e <none> 2.490e-07 8.000
e -InL 1 6.47812.478
e -InM 1 8.27214.272
e -InH 1 34.01340.013

o Call: gim(formula = BPD ~ InH + InL + InM, family = binomial, data = bpd)

» Coefficients:
* (Intercept) InH InL InM
e -6844.33 1239.44 48.53 02.38

 Degrees of Freedom: 39 Total (i.e. Null); 36 Residual
 Null Deviance: 50.45
 Residual Deviance: 2.49e-07 AIC: 8



Forward selection, InH entered first

Model Deviance Change P-value
Null 50.4465
InH 10.0584 40.3881 0.000

InH + InL 8.2717 1.7867 0.181
InH + InM 6.4784  3.5800 0.058

If InH is entered first then adding either InL or
INM will not significantly change the residual
deviance. This forward selection would stop
at this point. One might suggest using an
o = 0.10. If one does, InM would be entered
at this step and InL would be entered at the
next step. The final model would then contain
all three variables.



Other selection procedures

e Backward elimination

— Begin with a full model with all variables
Included.

— Eliminate a variable if by doing so you
do not significantly change the residual
deviance.

— Continue eliminating variables until do-
ing so would significantly increase the
residual deviance.



Backward elimination

Model Deviance Change P-value
InL + InM 4+ InH 1.3409

InM 4+ InH 6.4784 5.1375 0.023
InL + InH 8.2717 6.9308 0.008
InL 4+ InM 34.0134 32.6725 0.000

Dropping any variable from the full model will
significantly change the residual deviance giv-
INg a worse fit. This indicates that the model
with all three variables is the best fit.



Other selection procedures

e Stepwise
— Start with the null (intercept only) model.

— Add a term that significantly reduces
the residual deviance.

— Continue to add terms that significantly
reduces the residual deviance. Check
other terms in the model to see if any
can be eliminated. Stop when no more
terms can be added or eliminated.



Stepwise selection

e A stepwise selection procedure will run into
the same problems a forward selection pro-
cedure will in terms of stopping too soon.

e One can also do a stepwise selection proce-
dure by starting with a backward elimina-
tion and checking to see if any of the previ-
ously eliminated variables might be added
at a later time.



BPD In newborns

Incidence of BPD vs. In(hours) at various levels of OZ
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e Download data from
www.owlnet.rice.edu/~stat553/



e bpd$
og(b
og(b

nL <- log(bpd$Low+1) bpd$InM <-

0C

0C

$Medium+1) bpd$inH <-
$High+1)

e #Uset
regression model bpd2 <- gim(BPD ~ InL
+ InM + InH, family=binomial, data=bpd)

ne glm function to fit a # logistic



« summary(bpd2)
e anova(bpd2, test="Chisq")

* bpd2 <- gim(BPD ~ InH + InL + InM,
family=binomial, data=bpd)
summary(bpd2) anova(bpd2, test="Chisq")



All Possible Models

e As the name implies, every possible combi-
nation of variables is used to fit the data.

e [ he model that has the smallest residual
deviance with all variables statistically sig-
nificant would be chosen as the “best” model.

e [ his exhaustive search can become quite
burdensome when there are many explana-
tory variables to consider.



Summary

e Binary response data abounds in many dif-
ferent application areas.

e Binary response data presents special prob-
lems because

— the nature of the relationship is often
curved.

— the response is bounded below by zero
and above by one.

— equal variance and normal distribution
assumptions are unreasonable.



Summary

e [ he logit transformation can account for
the curved nature of the response as well
as the bounds.

e Maximum likelihood estimation techniques
are easy to apply to binary data provided
one has access to a statistical computing
package such as S+.

e [ he computing package accounts for the
binomial nature of the response and uses
the logit transformation.



Summary

e Inference for logistic regression is asymp-
totic in nature and so requires large amounts
of data.

e Multiple logistic regression is a straightfor-
ward extension of one variable logistic re-
gression.

e Various selection procedures can be em-
ployed to search for the “best” model.
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