Changes in exploited marine systems - From the open ocean to Hudson River -

What was the most common large animal ($>40 \mathrm{Kg}$) in the world? (perhaps this one was)

Loss of sharks in the Gulf of Mexico

300 fold_decline - no_nene noticed

Oceanic Whitetip captures per 10,000 hooks

Loss of Dusky Sharks in the Eastern US

Proportional reduction in current fishing mortality needed to ensure survival of shark populations

Myers \& Worm, Phil. Trans. Royal Society B 2005

What does this imply:

> It is not possible to think about ecosystems without thinking about history.

Fig. 21.-Recaptures to October, 1934, of cod tagged in the Jeddore Rock to Egg Island area, N.S., in May, 1934.

Fig. 18.-Recaptures in May to October, 1934, 1935, 1936 and 1937, of cod tagged near Halifax in June, 1934.

Fig. 15.-Recaptures during "summers" of 1927, 1928, 1929 and 1930 of cod tagged off Shelburne, N.S., during September and the first day of October, 1926.

What does this imply:

> Loss of populations is one of the most important consequences to overfishing.

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

Results

Decline of Mediterranean Sharks

By catch associated with a Tuna Trap

In Tirrenian Sea

"Tonnarella di Baratti"

Hammerhead shark

School shark

Smooth-hound

Loss of Reef Sharks in the Hawaiian Islands

N.W.Hawaiian Islands vs Main Hawaiian Islands

Friedlander A.M. \& E.E. DeMartini 2002 - Marine Ecology Progress Series

Common patterns of decline

Catch Per Hundred Hooks, Year $=1952$

Myers and Worm Nature 2003

Catch Per Hundred Hooks, Year $=1953$

Catch Per Hundred Hooks, Year $=1954$

Catch Per Hundred Hooks, Year $=1955$

Catch Per Hundred Hooks, Year $=1956$

Catch Per Hundred Hooks, Year $=1957$

Catch Per Hundred Hooks, Year $=1958$

Catch Per Hundred Hooks, Year $=1959$

Catch Per Hundred Hooks, Year $=1960$

Catch Per Hundred Hooks, Year $=1961$

Catch Per Hundred Hooks, Year $=1962$

Catch Per Hundred Hooks, Year $=1963$

Catch Per Hundred Hooks, Year $=1964$

Catch Per Hundred Hooks, Year $=1965$

Catch Per Hundred Hooks, Year $=1966$

Catch Per Hundred Hooks, Year $=1967$

Catch Per Hundred Hooks, Year $=1968$

Catch Per Hundred Hooks, Year $=1969$

Catch Per Hundred Hooks, Year $=1970$

Catch Per Hundred Hooks, Year $=1971$

Catch Per Hundred Hooks, Year $=1972$

Catch Per Hundred Hooks, Year $=1973$

Catch Per Hundred Hooks, Year $=1974$

Catch Per Hundred Hooks, Year $=1975$

Catch Per Hundred Hooks, Year $=1976$

Catch Per Hundred Hooks, Year $=1977$

Catch Per Hundred Hooks, Year $=1978$

Catch Per Hundred Hooks, Year $=1979$

Catch Per Hundred Hooks, Year $=1980$

Study area

Analysis repeated using independent research data

Ward and Myers 2005 Eology

These estimates are conservative: 2 (fish are smaller)

Change in body size

Loss of species density per decade

> Displayed is the number of tuna and billfish species that are found on a standard longline with 1000 hooks
> The time series runs from 1952-1999
> It shows how large hotspots are disappearing over time and how few concentrations of diversity remain today

After data from: Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (2005) Global patterns of predator diversity in the open oceans. Science Aug. 2005.

1950s

1	2	3	4	5	6
species density					

Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (Science Aug. 2005)

1960s

Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (Science Aug. 2005)

1970s

Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (Science Aug. 2005)

1980s

Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (Science Aug. 2005)

1990s

Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (Science Aug. 2005)

Loss of sharks in the Gulf of Mexico 300 fold decline - no one noticed

Oceanic Whitetip captures per 10,000 hooks

Loss of sharks in the Gulf of Mexico 300 fold decline - no one noticed

Oceanic Whitetip captures per 10,000 hooks

What about prey fish?

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with Henry Waszczuk and Italo Labignan, 1995,

Explosion of Pomfrets in the Gulf of Mexico ~ 1000 fold increase - no one noticed

Pomfret captures per 10,000 hooks

The Rise of the Marine Mesopredators

Pelagic Sting Ray Pteroplatytrygon violacea

Photos from Phillip Colla, photography

Explosion of Pelagic Stingrays in the Gulf of Mexico ~1000 fold increase - no one noticed

Pelagic stingray captures per 10,000 hooks

Bay

Scallops
Northeast US

Loss of hammerheads from surveys

Great hammerhead

Generalized linear model results

	Estimate	StdErr	p	$\mathrm{k} /$ scale
Abundance	-0.169	0.0171	$5.67 \mathrm{e}-23$	4.28
Length	-0.0105	$1.4 \mathrm{e}-3$	$8.85 \mathrm{e}-14$	18.8

Generalized linear model results

	Estimate	StdErr	p	$\mathrm{k} / \mathrm{scale}$
Abundance	-0.172	0.0443	$9.99 \mathrm{e}-5$	4.28
Length	-0.0136	$5 . \mathrm{e}-3$	$6.69 \mathrm{e}-3$	63.2

Relative abundance

Instaneous rate of change in abundance with time

Trophic Cascades: Consequences of the loss of top predators may be greater than we think

Why is estimating density-dependence such a hard thing to do?

> Large estimation error
> Complex nonlinear process
> The issue is primarily one about creation and elimination of variability, it is simply not possible to think about these processes without models

Solutions

> Collect all the data in the world
> Analyze it in the right way

All Species

General result 1:

> More Egg => More Fish

Three simple questions

1. Does the largest recruitment occur when the spawner abundance is high?

Three simple questions

1. Does the largest recruitment occur when the spawner abundance is high?
2. Does the smallest recruitment occur when spawner abundance is low?

Three simple questions

1. Does the largest recruitment occur when the spawner abundance is high?
2. Does the smallest recruitment occur when spawner abundance is low?
3. Is the mean recruitment higher if the spawner abundance is above rather than below the median?

Spawning stock biomass (thousand tons)

Spawning stock biomass (thousand tons)

What does this imply 1 :

> Compensation is not infinite.

What does this imply 2:

Ricker type recruitment is very rare, at least in the range of spawner abundances usually observed in exploited populations (it is not good for the fish to kill a lot of them).

General Result 2:

> The level of compensation (the scope for the reduction in density-dependent mortality to allow a population increase) is relative constant among almost all fish species

What is the maximum interest rate (on average)

 you can obtain by investing in striped bass futures?
Δ Bony fish

- Sharks

Mammals

Fecundity

Sockeye salmon - Adams Complex, B.C.

Spawners (Millions)

Cod - Iceland

Striped bass - East Coast, USA

[^0]

Log maximum annual reproductive rate

Log maximum annual reproductive rate

Maximum average rate that spawners can produce replacement spawners per year

Log Maximum Annual Reproductive Rate

Are fish different from mammals?

Δ Bony fish

- Sharks
\times Mammals

Fecundity

Approach

> Separate data into two parts: one for hypothesis generation, one for hypothesis testing (this keeps me from "cheating").

Four Ways to Look at Density-dependent Mortality

> Use Virtual Population Analysis to obtain an estimate of scope of compensation (we just did this)
> Use Linear State Space Models using the Analysis of Covariance Structure
> Use Generalized Linear Mixed Effects Models
> Use Meta-analytic nonlinear, non-Gaussian state space models.

Hjort's (1914) critical period hypothesis

> 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
> This is the fundamental issue in population regulation and ecology of fish.

Hjort's Hypothesis: Strong Version

Why we need new methods to analyze marine data

What can we learn from the history of physics.

Imperial Mathematician

Kepler's elliptical orbit for Mars..

Kepler's elliptical orbit for Mars..

Previous abundance estimates

Apply dynamics (transition eqn)

Observe a location with error

Integrate over predicted \& observed densities (Bayes Rule)

Updated prediction becomes prior for next time step

Estimate parameters by Bayesian or Likelihood Analysis

Bayes Rule

$$
p\left(\mathbf{x}_{t} \mid \mathrm{Y}_{t} ; \gamma\right)=\frac{p_{y}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathrm{Y}_{t-1} ; \gamma\right)}{\int p_{y}\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathrm{Y}_{t-1} ; \gamma\right) d \mathbf{x}_{t}}
$$

Innovation Likelihood of Observe Population Trajectories

Stage-based data for striped bass from Hudson Estuary:

Egg production is a Lognormal Random Variable

TABLE 1. Data for the North Sea cod stock from VPA in millions of fish, IYFS innumbers per hour fished, and EGFS in numbers per hour fished.

Year class	VPA 1-yr-olds	IYFS 1-yr-olds	IYFS 2-yr-olds	EGFS 0-yr-olds	EGFS 1-yr-olds	EGFS 2-yr-olds
1970	847	98.30	34.50			
1971	159	4.10	10.60			
1972	289	38.00	9.50			
1973	232	14.70	6.20			
1974	426	40.30	19.90			
1975	196	7.90	3.20		62.70	12.50
1976	726	36.70	29.30		13.90	22.80
1977	426	12.90	9.30	12.90	24.20	6.80
1978	449	9.90	14.80	12.60		
1979	800	16.90	25.50	18.60	50.80	13.90
1980	271	2.90	6.70	10.20	11.40	2.90
1981	557	9.20	16.60	74.20	32.40	11.00
1982	269	3.90	8.00	2.50	15.40	4.70
1983	534	15.20	17.60	95.10	61.20	11.90
1984	108	0.90	3.60	0.40	4.30	1.20
1985	581	17.00	28.80	8.30	34.40	10.70
1986	257	8.80	6.10	1.20	14.20	4.10
1987	201	3.60	6.30	0.40	8.40	2.50
1988	324	13.10	15.20	16.80	22.80	5.10
1989		3.30		6.0	6.10	
1990				3.90		

Dynamical Equation:

Dynamical Equation for Log Abundance:

Analysis of Covariance Structures

$$
\left[\begin{array}{cccc}
\operatorname{VAR}\left(l_{t, 0,1}\right) & \operatorname{COV}\left(l_{t, 0,1,}, l_{t, 0,2}\right) & \operatorname{COV}\left(l_{t, 0,1,}, l_{t, 1,1}\right) & \operatorname{COV}\left(l_{t, 0,1}, l_{t, 1,2}\right) \\
& \operatorname{VAR}\left(l_{t, 0,2}\right) & \operatorname{COV}\left(l_{t, 0,2,}, l_{t, 1,1}\right) & \operatorname{COV}\left(l_{t, 0,2}, l_{t, 1,2}\right) \\
& & \operatorname{VAR}\left(l_{t, 1,1}\right) & \operatorname{COV}\left(l_{t, 1,1,1}, l_{t, 1,2}\right) \\
& & & \operatorname{VAR}\left(l_{t, 1,2}\right)
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\phi+\theta_{0,1} & \phi & \lambda \phi & \lambda \phi \\
& \phi+\theta_{0,2} & \lambda \phi & \lambda \phi \\
& & \lambda^{2} \phi+\psi+\theta_{1,1} & \lambda^{2} \phi+\psi \\
& & & \lambda^{2} \phi+\psi+\theta_{1.2}
\end{array}\right] .
$$

Myers and Cadigan 1993a,b 1993

The greatest part of density-dependent mortality occurs around June

> This density dependent mortality is large, and is described by the equation

$$
\mathrm{N}_{\mathrm{t}, 1}=\mathrm{N}_{\mathrm{t}, 0} \mathrm{e}^{-\mathrm{m}-(1-\lambda) \log \mathrm{N}_{\mathrm{t}, 0}+\varepsilon_{\mathrm{t}}}
$$

Variation in larvae $=$ 1.2

$$
\begin{aligned}
\text { DDM } & =0.75 \\
(\text { se.e } & =0.2)
\end{aligned}
$$

Variation in
mortality $=0.8$

The greatest part of density-dependent mortality occurs around June
> This density dependent mortality is large, and is described by the equation

$$
\mathrm{N}_{\mathrm{t}, 1}=\mathrm{N}_{\mathrm{t}, 0} \mathrm{e}^{-\mathrm{m}-(1-\lambda) \log \mathrm{N}_{\mathrm{t}, 0}+\varepsilon_{\mathrm{t}}}
$$

Variance in larvae $=$

$$
1.14
$$

$$
\begin{gathered}
\mathrm{DDM}=0.75 \\
(\mathrm{se}=0.2)
\end{gathered}
$$

Variance in
mortality $=0.67$
Variation due to larvae $=1.14 *\left(.25^{2}\right)=0.75$
That is, by July a round 10% of the variance in relative abundance is due to egg/larval abundance.

The greatest part of density-dependent mortality occurs around June

> This density dependent mortality is large, and is described by the equation

$$
\mathrm{N}_{\mathrm{t}, 1}=\mathrm{N}_{\mathrm{t}, 0} \mathrm{e}^{-\mathrm{m}-(1-\lambda) \log \mathrm{N}_{\mathrm{t}, 0}+\varepsilon_{\mathrm{t}}}
$$

Variance in larvae $=$
1.14

DDM $=0.75$ ($\mathrm{se}=0.2$)

Variance in
mortality $=0.67$

Results confirmed from beach and shoal surveys.

Industry Beach Survey

The density dependent mortality after June is

 weak> This density dependent mortality is large, and is described by the equation

$$
\begin{array}{r}
\mathrm{N}_{\mathrm{t}, 1}=\mathrm{N}_{\mathrm{t}, 0} \mathrm{e}^{-\mathrm{m}-(1-\lambda) \log \mathrm{N}_{\mathrm{t}, 0}+\varepsilon_{\mathrm{t}}} \\
\qquad \begin{array}{c}
\mathrm{DDM}=0.82 \\
(\mathrm{se}=0.16)
\end{array} \\
\text { Variance in } \\
\text { mortality }=0.05
\end{array}
$$

Results confirmed from beach, shoal and DEC surveys, and from alternative methods.

Alternative approach: Generalized linear mixed effects model

> Model that accounts for year, sample station, variation in catchability through the year

Does density dependenct mortality occur after July?

Does density dependenct mortality occur after July?

After July, this closer to the truth

Hjort's (1914) critical period hypothesis

> 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
> June (soon after the larval period) is the critical period for Hudson River Striped bass.

Questions

> How do we include species interactions?
> How do we include more general functional forms (we assumed mortality is proportional to log (numbers).
> How do we include more general error distribution, e.g. discrete distribution.
> How do we include more general random effects distribution?

Extension: Includes species interactions

The First Collective Act of Humanity was to save the great whales -
despite massive denial

- we can do
the same for the remaining virgin areas of the oceans and for the great sharks.

Critical period hypothesis: strong version

$>\operatorname{Var}\left(\right.$ mortality $\left._{\text {age<critical }}\right) \gg \operatorname{Var}\left(\right.$ mortality $\left._{\text {age }>c r i t i c a l}\right)$
> Density dependent mortality ≈ 0 for age $>$ critical age
> We know of no cases where this is even approximately true.

Variability in recruitment increase with age for cod and decreases for trout.

Hjort's Hypothesis:Weak Version

Critical period hypothesis: weak version

$>\operatorname{Var}\left(\right.$ mortality $\left._{\text {age<critical }}\right) \gg \operatorname{Var}\left(\right.$ mortality $\left._{\text {age }>\text { critical }}\right)$
Density-dependent mortality after the critical period does not alter ordering of year-class size.

Freshwater brook trout - Hell Diver 3 Lake, Sierra Nevada

Hjort's Hypothesis: NOT Stochastic Mortality

Hjort's Hypothesis: NOT

Density Dependent mortality after critical period alters ordering of year class size,
e.g. Over-compensation

To test Hjort's hypothesis we need a model which:

> Use research surveys which estimate abundance at different ages of the same cohort.
> Estimate the variance in mortality.
> Estimate density-dependent mortality.
> Treat cohorts as random effects.
> Include measurement error.
> Obtain estimates that can be combined across populations.

The state of the art until now:

> Myers and Cadigan (1993a and b) developed method to estimate density-dependent mortality and the variance in mortality in the presence of measurement error.
> Results could be combined across populations using metaanalysis.
> Can. J. Fish Aquat. Sci. 50: 1576-1590.
> Can. J. Fish Aquat. Sci. 50: 1591 - 1598.

Hudson River - using meta-analytic state space models

> Each cohort is examined multiple times from different surveys.
> Egg, larval, seine, and trawl surveys are included.
> Data is divided into two parts: (1) one part used for model generation and (2) one part used for model testing.

Results for Hudson River - using metaanalytic state space models

> Very strong density-dependent mortality, the functional form of density dependent mortality is identified.
> Strong density-dependent mortality occurs early, i.e. in June.

Next stage

> Modeling species interaction on each life-history stage.
> Modeling density-dependent habitat expansion
> Management implications.

Prime difficulty:

> Estimation of fish abundance is hard, and even the best surveys have large estimation error (you cannot carry out a simple, controlled experiment).

Solution to estimation error problems

> Use methods that optimally account for estimation error.
> Use independent data sets (i.e. the beach and shoal surveys).
> Break data into parts: generate hypotheses using one data set, and test with other.
> Use meta-analysis of multiple populations.

Behaviour of Biological Communities

Loss of species density per decade

> Displayed is the number of tuna and billfish species that are found on a standard longline with 1000 hooks
> The time series runs from 1952-1999
> It shows how large hotspots are disappearing over time and how few concentrations of diversity remain today

After data from: Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (2005) Global patterns of predator diversity in the open oceans. Science Aug. 2005.

What do we know from previous studies?

> Collect all the data in the world
> Analyze it in the right way.

What is consistent with the Hudson River Data, with virtually all other data in the world:

> Higher spawner abundance => higher recruitment
> Strong density dependence, similar levels to all commercial cod and flatfish in the world
> Higher variability in survival at low spawner abundances,
> Lower variability in survival at high spawner abundances

What is unique about Hudson River striped bass?

> Density dependent mortality occurs in a very short life-history stage, during first settlement to the beach areas around June. This is also the most important time for variability in survival.

Common patterns of decline

$\cdots x^{12}+2+2$ $=-2 \times 4 \cdot \frac{1}{4}$

Change in total biomass

Cod and shrimp biomass in the North Atlantic: correlations

Brown Trout vs Cod

Behaviour of Ecological Communities

Marine data Communities are Claimed to be Very compex:
 Link, MEPS. 2002.

Fig. 1. Species and links of the northwest Atlantic food web. This tangled 'bird's nest' represents interactions at the approximate trophic level of each species, with increasing trophic level towards the top of the web. The left side of the web generally typifies pelagic orgarisms, and the right to middle represents more benthic/demersally oriented orgarisms. Red lines indicate predation on fish. $1=$ detritus, $2=$ phytoplankton, $3=$ Calanus sp., $4=$ other copepods, $5=$ ctenophores, $6=$ chaetognatha (i.e. arrow worms), $7=$ jellyfish, $8=$ euphasiids, $9=$ Crangon sp., $10=$ mysids, $11=$ pandalids, $12=$ other decapods, $13=$ gammarids, $14=$ hyperiids, 15 = caprellids, $16=$ isopods, $17=$ pteropods, $18=$ cumaceans, $19=$ mantis shrimps, $20=$ turicates, $21=$ porifera, $22=$ cancer crabs, 23 $=$ other crabs, $24=$ lobster, $25=$ hydroids, $26=$ corals and anemones, $27=$ polychaetes, $28=$ other worms, $29=$ starfish, $30=$ brittle stars, $31=$ sea cucumbers, $32=$ scallops, $33=$ clams and mussels, $34=$ snails, $35=$ urchins, $36=$ sand lance, $37=$ Atlantic herring, $38=$ alewife, $39=$ Atlantic mackerel, $40=$ buttertish, $41=$ loligo, $42=$ illex, $43=$ pollock, $44=$ silver hake, $45=$ spotted hake, $46=$ white hake, $47=$ red hake, $48=$ Atlantic cod, $49=$ haddock, $50=$ sea raven, $51=$ longhorn sculpin, $52=$ little skate, $53=$ winter skate, $54=$ thormy skate, $55=$ ocean pout, $56=$ cusk, $57=$ wolfish, $58=$ cunner, $59=$ sea robins, $60=$ redfish, $61=$ yellowtail flounder, $62=$ windowpane flounder, $63=$ summer flounder, $64=$ witch flounder, $65=$ four-spot flounder, $66=$ winter flounder, $67=$ American plaice, $68=$ American halibut, $69=$ smooth dogfish, $70=$ spiny dogfish, $71=$ goosefish, $72=$ weakfish, $73=$ bluefish, $74=$ baleen whales, $75=$ toothed whales and porpoises, $76=$ seals, $77=$ migratory scombrids, $78=$ migratory sharks, $79=$ migratory billfish, $80=$ birds, $81=$ humans

Hjort's critical period hypothesis; When does density-dependent and stochastic mortality occur?

Models, Analysis and Meta-Analysis

Ransom A. Myers
Biology Department, Dalhousie University
Halifax, Canada

Implications for Hudson Esturary

> Where do striped bass fit in the ecosystem in a historical context?
> Was it the top predator? - in the river, perhaps so, but in the ocean no.
> Look at traditional

Ecologist have often looked at the complexity

Show link diagram
Say that the complexity exits, but we can understand much more if we look at general principals

Hjort's (1914) critical period hypothesis

> 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
> This is the fundamental issue in population regulation and ecology of fish.

Fundamental Limitation of Statistics

> We only really understand linear models with Gaussian errors.
> We start with these models, and modify them.

Hjort's (1914) critical period hypothesis

> 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
> This is the fundamental issue in population regulation and ecology of fish.

Hjort's Hypothesis: Strong Version

Variability in recruitment increase with age for cod and decreases for trout.

Hjort's Hypothesis:Weak Version

Critical period hypothesis: weak version

$>\operatorname{Var}\left(\right.$ mortality $\left._{\text {age<critical }}\right) \gg \operatorname{Var}\left(\right.$ mortality $\left._{\text {age }>\text { critical }}\right)$
Density-dependent mortality after the critical period does not alter ordering of year-class size.

Hjort's Hypothesis: NOT Stochastic Mortality

Hjort's Hypothesis: NOT

Density Dependent mortality after critical period alters ordering of year class size,
e.g. Over-compensation

To test Hjort's hypothesis we need a model which:

> Use research surveys which estimate abundance at different ages of the same cohort.
> Estimate the variance in mortality.
> Estimate density-dependent mortality.
> Treat cohorts as random effects.
> Include measurement error.
> Obtain estimates that can be combined across populations.

The state of the art until now:

> Myers and Cadigan (1993a and b) developed method to estimate density-dependent mortality and the variance in mortality in the presence of measurement error.
> Results could be combined across populations using metaanalysis.
> Can. J. Fish Aquat. Sci. 50: 1576-1590.
> Can. J. Fish Aquat. Sci. 50: 1591 - 1598.

Abundance index

Table 1. Data for the North Sea cod stock from VPA in millions of fish, IYFS innumbers per hour fished, and EGFS in numbers per hour fished.

Year class	$\underset{\text { 1-yT-oids }}{\text { VPA }}$	IYFS 1-yr-olds	$\begin{gathered} \text { IYFS } \\ \text { 2-yr-olds } \\ \hline \end{gathered}$	EGFS 0 -yr-olds	EGFS 1 -yr-olds	EGFS 2-yr-olds
1970	847	98.30	34.50			
1971	159	4.10	10.60			
1972	289	38.00	9.50			
1973	232	14.70	6.20			
1974	426	40.30	19.90			
1975	196	7.90	3.20			4.50
1976	726	36.70	29.30		62.70	12.50
1977	426	12.90	9.30	13.90	22.80	5.80
1978	449	9.90	14.80	12.60	24.20	6.70
1979	800	16.90	25.50	18.60	50.80	13.90
1980	271	2.90	6.70	10.20	11.40	2.90
1981	557	9.20	16.60	74.20	32.40	11.00
1982	269	3.90	8.00	2.50	15.40	4.70
1983	534	15.20	17.60	95.10	61.20	11.90
1984	108	0.90	3.60	0.40	4.30	1.20
1985	581	17.00	28.80	8.30	34.40	10.70
1986	257	8.80	6.10	1.20	14.20	4.10
1987	201	3.60	6.30	0.40	8.40	2.50
1988	324	13.10	15.20	16.80	22.80	5.10
1989		3.30		6.0	6.10	
1990				3.90		

Fig. 1. Pairwise plots of abundance estimates for North Sea sole (Table 1). The estimates are log transformed. The correlation coefficient is presented in the lower right comer.

$$
\left[\begin{array}{cccc}
\operatorname{VAR}\left(l_{t, 0,1}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{l, 0,2}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{l, 1,1}\right) & \operatorname{COV}\left(l_{l, 0,1}, l_{t, 1,2}\right) \\
& \operatorname{VAR}\left(l_{l, 0,2}\right) & \operatorname{COV}\left(l_{l, 0,2}, l_{t, 1,1}\right) & \operatorname{COV}\left(l_{t, 0,2}, l_{t, 1,2}\right) \\
& & \operatorname{VAR}\left(l_{l, 1,1}\right) & \operatorname{COV}\left(l_{\left.t, 1,1, l_{l, 1,2}\right)}\right. \\
& & & \operatorname{VAR}\left(l_{l, 1,2}\right)
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\phi+\theta_{0,1} & \phi & \lambda \phi & \lambda \phi \\
& \phi+\theta_{0,2} & \lambda \phi & \lambda \phi \\
& & \lambda^{2} \phi+\psi+\theta_{1,1} & \lambda^{2} \phi+\psi \\
& & & \lambda^{2} \phi+\psi+\theta_{1,2}
\end{array}\right]
$$

Variance in mortality after critical period low for gadoids and flatfish.

Spawners

Spawning stock biomass (thousand tons)

Summarizing information from more than one population

- Weighted mean of relative ranks

$$
\frac{\sum_{i=1}^{k} n_{i} r_{\max , i}}{\sum_{i=1}^{k} n_{i}}
$$

- If spawner abundance and recruitment were independent, the expected value of $r_{\text {max, }}$; would be 0.5

The First Collective Act of Humanity was to save the great whales -
despite massive denial

- we can do
the same for the remaining virgin areas of the oceans and for the great sharks.

The First Collective Act of Humanity was to save the great whales -
despite massive denial

- we can do
the same for the remaining virgin areas of the oceans and for the great sharks.

Blue marlin (Makaira nigricans)

Sailfish
 (Istiophorus albicans)

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca

Is shrimp trawling driving sharks and rays extinct?

Shallow species are going extinct
Deep species are increasing

Species Group Time (yr) Source

Not only have large predators declined by at least a fact 10, but mesopredators have often increased by at least a factor of 10 .

FMAP (Future of Marine Animal Populations) part of the Sloan Census of Life http://www.fmap.ca Pew Global Sharks Assessment http://www.globalsharks.ca

Single species models are not even remotely consistent with the data, e.g. Swordfish from the South Atlantic

Sensitivity 4, Japanese index

White Marlin: Atlantic, single species models do not work Very well.

ICCAT shark assessments in the Atlantic don't even remotely fit reliable data: Similar pattern for US government research surveys.

Figure 10 (above). Fit of the model to the North Atlantic blue shark CPUE data for each of the runs considered.

Atlantic, Latitude $=-15$ to -10

Bluefine tuna (observed diamonds) and modeled - not a very good fit.

RED HERRING 1: RATIO ESTIMATION

Scenario A

Scenario B

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

------ True population
O Abundance estimate from CPUE
__ Abundance estimate, Walters' method

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 4: The sharks probably declined

 more

Oceanic Whitetip captures per 10,000 hooks

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative 7: changes in depth increases overall efficiency.

Declines confirmed by independent data:

> The initial high catch rates were seen in early research surveys by Japan and US.
> Declines seen in harpoon fisheries for swordfish and tuna.
> Most tuna traps in the Mediterranean have largely been abandoned, Italy there is a decline from 100 to 3 tuna traps.
> Complete loss of species in some areas.

Loss of Bluefin Tuna Populations in the Atlantic

Perceived Contradiction in Initial Rapid Decline in CPUE

> 1. Large declines occurred when effort was relatively small

Perceived Contradiction in Initial Rapid Decline in CPUE

2. Present effort is much higher.

Perceived Contradiction in Initial Rapid Decline in CPUE

3. Present fishing mortality due to longlines is around 0.6

Perceived Contradiction in Initial Rapid Decline in CPUE

IF catchability is constant
THEN the population dynamics are impossible.

However, catchability decreases with size and size has declined

Loss of Bluefin Tuna Populations in the Atlantic

North Sea Bluefin Tuna

A Toy Model

> Recruitment constant
> Longline effort increases linearly over 35 years
> Catchability is proportional to the product of: (a) a cumulative normal and (b) food intake (respiration is proportional to the $2 / 3$'s power of mass)
> Present fishing mortality is around 0.6.

North Atlantic albacore cumulated catches of youngs and adults fish

Conclusion

> Immediate action needed to protect some sharks, leatherbacks, loggerheads, and some tuna (Atlantic northern bluefin)
> Productivity (juvenile survival) has increased with exploitation.
> Rapid declines in CPUE reflect real declines in large fish
> Reduced effort is needed to achieve greater economic yield

Acknowledgements

$>$ Boris Worm, Peter Ward, Leah Gerber, Julia Baum, Dan Kehler, Francesco Ferretti
$>$ Pew Charitable Trusts
Sloan Foundation - Gensuls of Marine Life, Future of Marine Animal Populations (EMAP)

- NSERC
- Pelagic Fisheries Research Program
- German Research Council
> Killam Foundation

2. Numerous colleagues who shared data

Fig. 3. Recent reconstruction, using virtual population analysis, of the Newfoundland northern cod decline, compared with estimates and projections published in various years after Canada took over the fishery under extended jurisdiction. VPA estimates based on data in Baird et al. (1992) (see also Hutchings and Myers, 1994). NAFO estimates from annual reports for years indicated of North Atlantic Fisheries Organization Scientific Council Reports, Dartmouth, NS. CAFSAC estimates from Canadian Atlantic Fisheries Scientific Advisory Committee Advisory Documents 89/1 and 91/1.

Rapid decline in older albacore.

Figure 7: Evolution of contribution of age classes 6 to 10+ computed by Morita (1977) in longliners albacore catches, 1956-1974.

Marine ecosystem robustness and the collaps marine fisheries

Ransom A. yers (RAM)
Dalhousie University, Halifax,
Canada

One hypothesis:

Collapse and Conservation of Shark Populations in the Northwest Atlantic

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

U.S. Atlantic pelagic longline sets 1986-2000

Political action is costly for any scientist.

However, it also has great benefits.

To act is to live.
To be suppressed is to die.

Hammerhead sharks

Sphyrna lewini

Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty

The rest of the slides are back up.

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

Proportional reduction in current fishing mortality needed to ensure survival of shark populations

Letter from senate

Put in cod

These estimates are conservative: 1.

Bits of tuna did not count; $\sim 25-30 \%$ of tropical tunas were initially not counted because of shark damage.

These estimates are conservative: 2 (fish are smaller)

Change in body size

The estimates are confervative

These estimates are conservative 5: The oceans were not virgin.

> Japan harvested $\sim 1,000,000$ tons of tuna and marlin in the 5 years before WWII.
> In 1950 the US harvested ~170,000 tons.
> The 1950 harvest of albacore by Spain was greater than the total recent harvest in the North Atlantic.
> Species that migrate long distances (e.g. southern bluefin tuna, northern bluefin tuna, and albacore) would have reduced by these harvests.

These estimates are conservative: 6 Fishermen are smarter (gps, satellite information, ACDP (Acoustic Current Doppler Profiler)).

Locations of a leatherback turtle over a two week period tagged by my student Mike James that maintains its position within a cold core ring (somehow).

However, fish may be a lot smarter too (the stupid ones were caught).

Step 8: You need emotional support. Support from colleagues and family is essential. You cannot do it (for long) by yourself.

Why is it so important. What makes them work.

Shelf seas

Government science was consistently wrong, and there was no effective voice from universities.

Lessons I Learned from the Cod Disaster:

> Government constrained scientists may consistently ignore what the data tells them.
> Independence is key.
> Multiple, independent analyses are crucial; or else you will be dismissed.
> Speak clearly and honestly to the press, the politicians must know that someone is watching.
> Be proactive, once an animal is ecologically extinct it is too late.

RAM's 12 step plan: From hard core math weenie to passionate conservationist: A PERSONAL ODYSSEY.

Reaching the heart through mathematics.

Final point: keep fighting, keep hoping! This happened last week: Oceanic Whitetip declared critically endangered by ICUN

> Last year is was "species of least concern".
> This change was not because we published one paper in Science, but papers based upon 3 independent datasets (plus 2 math/stats technical papers).
> Skeptics remain - more analyses are in prep from scuba surveys of jellyfish (one notices large sharks while diving in the clear open ocean.

Conclusion: The Factor of 10 Hypothesis

> Scientific investigations of marine fish stocks almost always begin after the fact.
> Here we compile data from which the size of the community of large predatory fishes can be estimated.
> New fisheries tend to deplete the biomass of large predators by at least a factor of 10 .
> These declines happen very rapidly, usually in a decade or less.

Figure stolen from Paul Anderson
> The Good -
> Ban directed fisheries on sharks.
> Control fishing on skates.
> Keep a watch on bycatch.
> The Alaska Board of Fisheries prohibited all directed fisheries for sharks in 1998. In Southeast the bycatch rate for sharks and skates taken during other longline fisheries is 35% of the target species.

Figure 1. Big skate, Raja binoculata, with stock assessment author for scale.

All large sharks declined

Shallow water species that do not survive discarding: large declines:

Are the pleistocene extinctions* going to be repeated in the ocean?

*Present North American biota has lost almost all large species -
We have no mammoths, mastodons, giant ground sloths, giant beavers, and 65 other species that weighted more than 100 kilograms.

Years Ago

The extinction of large mammals and flightless birds coincided closely with the arrival of humans in North America, Madagascar, and New Zealand, and less decisively earlier in Australia. In Africa, where humans and animals evolved together for millions of years, the damage was less severe.

Deeper skate species that survive discarding increased

Stock Assessment and Fishery Evaluation of Skate species (Rajidae) in the Gulf of Alaska

Spiny Dogfish, Northwest Atlantic: Good Science - Ugly Decisions

Danish Landings of Bluefin Tuna

Thunnus thynnus

Landings of Bluefin Tuna

Thunnus thynnus in Northern Europe*

Landings of Bluefin Tuna

Thunnus thynnus in Northeast Atlantic

Life history of sharks...

Fecundity

Decline of Mako sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Thresher sharks

Alopias spp.

Blue sharks

Prionace glauca

1 Caribbean	6 NE Coastal
2 Gulf of Mexico	7 NE Distant
3 Florida	8 Sargasso
4 S Atlantic Bight	9 S America
5 Mid Atlantic Bight	

Decline of Thresher sharks

Boero F. \& A. Carli 1979 - Boll. Mus. Ist. Biol. Univ. Genoa (47)

Decline in Large Sharks's Catches by an Italian Tuna Trap

Vacchi M. et al. 2000-4th-Meeting-of-the-European-Elasmobranch-Association-Proceedings

Loss of Bluefin Tuna Populations in the Atlantic

North Sea Bluefin Tuna

Strategy:

> Formulate the most important problem in terms of a critical model where in terms of a few parameters that can be well estimated.
> Compile all data in the world on the issue
> Analyze it the right way

Outline of data flow to produce global maps of abundance for reef species. The goal is produce maps for species that are of interest to divers over time, and estimate the "pristine" abundances and biomass, and t he time trends over time to the present. This will be critical to estimating extinction probability.

Raw data on paper:

- old Japan data from Pacific
- old Japan data from Atlantic (one publication from equatorial Atlantic)
- old California Department of Fish and Game reports
- recent Japan data ICCAT documents (at least 5)
- old Canadian data
- old US east coast reports (we have a few on hand, others may be hidden at NMFS Gloester lab or in Miami)
- US expedition to the Indian Ocean in 1960 (Andy Bakum)
- Uruguay (p. 825 in Swordfish white books)
- Dave Long does longline surveys at NOAA La Jolla

Raw data in digital form:

- updates on Canadian data
- updates on US data
- observer data from the Mediterranean
- South Pacific Commission (we have much of this and could get more)
- Indian Ocean Commission?
- data sources in supplement to Lewison: Ecology Letters (2004) 7: 221-231
- Costa Rica
- cooperative shark tagging in Rl
- NE US, Simpendorfer 2002
- Bolten's data from Azores

Figure 3. Calibration of data gathered from professional and amateur divers.

Figure 3. Calibration of data gathered from professional and amateur divers.

Mike James
Andrea Ottensmeyer

Identification of high-use areas and threats to leatherback sea turtles in northern waters

James, Ottensmeyer and Myers Ecology Letters (2005)

Weights in Canadian waters

Nesting female morphometrics: St. Croix, U.S.V.I.
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147.
Lines fit by constant slope analysis of covariance after log transformation.

Male leatherback movements

- not previously described
- annual migratory cycle that includes movement between temperate foraging areas and tropical breeding areas

James, Eckert and Myers Marine Biology (in press)

Turtles are close to the surface during the day during migration

Leatherback turtles are unique in that they expose their pineal spot to sunlight.

Real Historical Data

Trinity Bay

Trinity Bay

St. John's to Cape Race

Conception Bay

The efficiency of the Newfoundland cod fishery had not changed in 4 centuries.

The only bioeconomic equilibrium of a highly subsidized fishery is zero fish.

Catch rates in the 1980's per person (20,000 fishers who caught ~200,000 metric tonnes of cod).

Trinity Bay

$\rightarrow \substack{\begin{subarray}{c}{\frac{2}{0} \\ 0} }} \\{\hline 0} \end{subarray}$

Lewison et al. 2004 Ecology Letters

Swordfishing fleot at anchor. Neils Harhour, Cape Breton. 13.

Mike James
Andrea Ottensmeyer

Identification of high-use areas and threats to leatherback sea turtles in northern waters

James, Ottensmeyer and Myers Ecology Letters (2005)

Weights in Canadian waters

Nesting female morphometrics: St. Croix, U.S.V.I.
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147.
Lines fit by constant slope analysis of covariance after log transformation.

Male leatherback movements

- not previously described
- annual migratory cycle that includes movement between temperate foraging areas and tropical breeding areas

James, Eckert and Myers Marine Biology (in press)

Leatherback turtles are unique in that they expose their pineal spot to sunlight.

Turtles are close to the surface during the day during migration

Turtles make more progress south during the day

Totally Stupid Reasons for not Believing the Obvious

> You ignore research surveys.
> Removing Large Predators Couldn’t Possibly Affect Survival of Other Fish.
> Fishing Couldn’t Possibly Affect the Size of Tuna.
> Fishermen are so stupid they cannot use satellite data to find tuna.
> Fishermen are so stupid that they don't improve their gear.

These estimates are conservative: 6 Fishermen are smarter (gps, satellite information, ACDP (Acoustic Current Doppler Profiler)).

Locations of a leatherback turtle over a two week period tagged by my student Mike James that maintains its position within a cold core ring (somehow).

However, fish may be a lot smarter too (the stupid ones were caught).
New Materials forFishing GearDouble EfficiencyDesign, every other gangionwas monofilament

Figure 3

(a) Day Operations

Ecosystem changes are consistent with a 10 fold decline in predation

>Key prey species would be predicted to increase by the changes in predation rate

Table 7. The occurrence of bramidae and gempylidae in tuna and billfish stomach contents in other studies.

species	Bramidae	Gempylidae	Literature	Region
Bigeye tuna	High	low	Moteki et al. (2001)	Pacific
	High	no	Mattews et al. (1977)	Atlantic
Yellowfin tuna	High	low	Moteki et al. (2001)	Pacific
	High	low	Mattews et al. (1977)	Atlantic
Albacore	High	High	Mattews et al. (1977)	Atlantic
Sword fish	High	low	Moteki et al. (2001)	Pacific

Bay

Scallops
Northeast US

Loss of hammerheads from surveys

Great hammerhead

Relative abundance

Trophic Cascades: Consequences of the loss of top predators may be greater than we think

Fitting a simple model to crazy data can yield reliable, and very powerful conclusions

Newspaper reports of sharks in Croatia

With training, "experts" can ignore the most obvious of data:

1872 - Man's head and leg and dolphin in stomach
1872 - 8 Great White Sharks reported caught
1888 - Woman's body and lamb in stomach
1894 - Preserved at Zagreb Nat. Hist. Mus.
1926 - Woman's shoes, laundry in stomach
1946 - Pig of 10 kg in stomach
1950 - Encounter during eating a dead calf
1954 - Attack on boat
1975+ -No sightings.

Newspaper reports of sharks in Croatia

[^0]: Resulting spawners
 (səuưł ło spuesnoчı) 6u!

