Hjort's critical period hypothesis; When does density-dependent and stochastic mortality occur?

Models, Analysis and Meta-Analysis

Ransom A. Myers
Biology Department, Dalhousie University
Halifax, Canada

Hjort's (1914) critical period hypothesis

- 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
- This is the fundamental issue in population regulation and ecology of fish.

Approach

- Develop Mathematical Models
- Develop Statistical Methods
- Collect all the data in the world
- Solve Problem

Testing for general patterns

http://www.fish.dal.ca/welcome.html

Hjort's Hypothesis: Strong Version

Critical period hypothesis: strong version

- $\operatorname{Var}\left(\right.$ mortality $\left._{\text {age<critical }}\right) \gg \operatorname{Var}\left(\right.$ mortality $\left._{\text {age>critical }}\right)$
- Density dependent mortality ≈ 0 for age $>$ critical age
- We know of no cases where this is even approximately true.

Variability in recruitment increase with age for cod and decreases for trout.

Hjort's Hypothesis:Weak Version

Critical period hypothesis: weak version

- $\operatorname{Var}\left(\right.$ mortality $\left._{\text {age<critical }}\right) \gg \operatorname{Var}\left(\right.$ mortality $_{\text {age }}>$ critical $)$ Density-dependent mortality after the critical period does not alter ordering of year-class size.

Hjort's Hypothesis: NOT Stochastic Mortality

Hjort's Hypothesis: NOT

Density Dependent mortality after critical period alters ordering of year class size,
e.g. Over-compensation

To test Hjort's hypothesis we need a model which:

- Use research surveys which estimate abundance at different ages of the same cohort.
- Estimate the variance in mortality.
- Estimate density-dependent mortality.
- Treat cohorts as random effects.
- Include measurement error.
- Obtain estimates that can be combined across populations.

The state of the art until now:

- Myers and Cadigan (1993a and b) developed method to estimate density-dependent mortality and the variance in mortality in the presence of measurement error.
- Results could be combined across populations using metaanalysis.
- Can. J. Fish Aquat. Sci. 50: 1576-1590.
- Can. J. Fish Aquat. Sci. 50: 1591 - 1598.

Variance in mortality after critical period low for gadoids and flatfish.

Atlantic salmon
Margaree River, NS, Canada

क $\underline{\underline{x}}$ $\underline{0}$

Sockeye salmon

Sockeye salmon
Kvichak River, Alaska

Chum salmon
Queen Charlotte Islands, B.C., Canada

Pink salmon

Pink salmon
Seldovia, Lower Cook Inlet, Alaska

Sockeye salmon

Sockeye salmon

Adult Abundance (thousands)

Figure 1: Adult abundance (thousands) versus the log survival rate for some representative salmonid populations. (Note: for lake whitefish (Lake Huron population) and pink salmon (Sashin Creek, Little Port Walter, Alaska population) the recruitment units are relative year-class strength and number of fry, respectively and the abundance units are numbers of eggs and number of females, respectively.)

Cod

Herring

Mackerel

Sardine
California

Barents Sea

Haddock West of Scotland

Plaice

Silver hake Mid Atlantic Bight

Adult Abundance (thousand tonnes)

Figure 3: The relationship between recruitment (top panel) and the standard deviation of survival at median ($\sigma_{\varepsilon}^{2}=0.5$, middle panel) and low ($\sigma_{\varepsilon}^{2}=0.1$, lower panel) pre-density dependent variable mortality levels. The solid line is the exact solution and the dotted line in the approximation. The recruitment is from the equation $R=3 S e^{-\frac{1}{10} S}$.

CLUPEIFORMES	27	1.02×10^{-10}	2.32	0.84
Clupeidae	26	1.11×10^{-10}	2.38	0.87
Alewife (Alosa pseudoharengus)	1	0.01	12.2	0.53
Atlantic Menhaden (Brevoortia tyrannus)	1	0.37	1.71	0.89
Gulf Menhaden (Brevoortia patronus)	1	0.15	2.60	0.64
Herring (Clupea harengus)	19	2.36×10^{-10}	2.45	0.89
Sardine (Sardinops sagax)	2	0.52	1.16	0.65
Sprat (Sprattus sprattus)	2	0.10	3.06	0.88
Engraulidae	1	0.18	2.18	0.68
Peruvian anchoveta (Engraulis ringens)	1	0.18	2.18	0.68
GADIFORMES	24	3.29×10^{-8}	2.11	0.63
Gadidae	24	3.29×10^{-8}	2.11	0.63
Cod (Gadus morhua)	10	5.52×10^{-7}	3.38	0.62
Haddock (Melanogrammus aeglefinus)	6	0.04	1.64	0.61
Hake (Merluccius merluccius)	1	0.10	5.00	0.60
Pollock or saithe (Pollachius virens)	2	0.26	1.52	0.77
Red hake (Urophysics chuss)	1	0.48	1.05	0.38
S.A. Hake (Merluccius capensis)	1	0.24	1.73	0.89
Silver hake (Merluccius bilinearis)	2	0.01	3.37	0.32
Walleye pollock (Theragra chalcogramma)	1	0.11	2.09	1.21
PERCIFORMES	3	0.02	2.39	0.69
Percidae	1	0.66	0.74	1.32
Eurasian perch (Perca fluviatilis)	1	0.66	0.74	1.32
Scombridae	2	7.61×10^{-3}	4.92	0.58
Chub mackerel (Scomber japonicus)	1	0.17	2.39	0.47
Mackerel (Scomber scombrus)	1	5.72×10^{-3}	7.45	0.69
PLEURONECTIFORMES	6	0.62	0.86	0.85
Pleuronectidae	4	0.37	1.74	0.50
Petrale sole (Eopsetta jordani)	1	0.13	3.27	0.46
Plaice (Pleuronectes platessa)	1	0.64	0.80	0.52
Yellowtail flounder (Limanda ferruginae)	2	0.45	1.54	2.16
Soleidae	2	0.87	0.80	2.36
Sole (Solea vulgaris)	2	0.87	0.80	2.36
SALMONIFORMES	51	4.20×10^{-3}	1.43	0.58
Esociadae	1	0.26	1.43	0.81
Pike (Esox lucius)	1	0.26	1.43	0.81
Salmonidae	50	4.41×10^{-3}	1.37	0.57
Atlantic salmon (Salmo salar)	3	0.12	3.89	0.58
Chum salmon (Oncorhynchus keta)	3	0.13	2.09	0.94
Lake Whitefish (Coregonus clupeaformis)	1	0.32	5.79	6.26
Pink salmon (Oncorhynchus gorbuscha)	15	6.04×10^{-3}	1.56	0.56
Sockeye salmon (Oncorhynchus nerka)	27	0.37	1.04	0.56
Whitefish (Coregonus lavaretus)	1	0.01	6.01	0.34
ALL SPECIES 17	111	3.3×10^{-16}	1.82	0.64

Table 1. Numbers of populations (n), results of Fisher's method to combine the probability (P) levels from one-sided significance tests to test if the variance in \log survival below the midpoint of the observed adult abundance, $\hat{\sigma}_{B}^{2}$ is greater than the variance above the midpoint, $\hat{\sigma}_{A}^{2}$, the median values of the ratio of the two variances (Median $\frac{\sigma_{B}^{2}}{\sigma_{A}^{2}}$), and the median values of the ratio of the mean recruitment for SSB below the midpoint to the mean recruitment for SSB above the midpoint of the observed adult abundance.

Stock

$$
\begin{array}{lll}
\mathrm{n} & P & \operatorname{Median}\left(\frac{\hat{\sigma}_{B}^{2}}{\hat{\sigma}_{A}^{2}}\right) \quad \operatorname{Median}\left(\frac{\mu_{R_{B}}}{\mu_{R_{A}}}\right)
\end{array}
$$

CLUPEIFORMES	27	1.02×10^{-10}	2.32	0.84
Clupeidae	26	1.11×10^{-10}	2.38	0.87
Alewife (Alosa pseudoharengus)	1	0.01	12.2	0.53
Atlantic Menhaden (Brevoortia tyrannus)	1	0.37	1.71	0.89
Gulf Menhaden (Brevoortia patronus)	1	0.15	2.60	0.64
Herring (Clupea harengus)	19	2.36×10^{-10}	2.45	0.89
Sardine (Sardinops sagax)	2	0.52	1.16	0.65
Sprat (Sprattus sprattus)	2	0.10	3.06	0.88
Engraulidae	1	0.18	2.18	0.68
Peruvian anchoveta (Engraulis ringens)	1	0.18	2.18	0.68

Nonlinear key factor analysis with measurement error.

- Myers and Cadigan analysis limited to one form of density-dependent mortality - mortality proportional to log abundance, other cases VERY hard.
- We have recently developed solutions for nonlinear random effects models with measurement error for the general problem that can estimate ANY nonlinear function and ANY distribution for mortality and estimation errors.
- These methods use simulated maximum likelihood methods to in a random effects nonlinear state space model using auto-differential software.

Georges Bank

Predictions and Preliminary Results:

- Hjort's strong hypothesis: never true.
- Hjort's weak hypothesis: approximately true for gadoids, flatfish, and freshwater percids.
- Hjort is wrong for salmonids
- Small pelagics - At low abundance Hjort’s weak hypothesis true, but not true for high abundance.
- Species interactions more important.

Conclusion

- We can test Hjort's hypothesis, we now have the methods and data.

