Hjort's critical period hypothesis; When does density-dependent and stochastic mortality occur?

Models, Analysis and Meta-Analysis

Ransom A. Myers Biology Department, Dalhousie University Halifax, Canada

Hjort's (1914) critical period hypothesis

- 'the numerical value of a year class is apparently stated at a very early age, and continues in approximately the same relation to that of other year classes throughout the life of the individuals"
- This is the fundamental issue in population regulation and ecology of fish.

Approach

- Develop Mathematical Models
- Develop Statistical Methods
- Collect all the data in the world
- Solve Problem

Testing for general patterns

http://www.fish.dal.ca/welcome.html

Hjort's Hypothesis: Strong Version

Critical period hypothesis: strong version

- Var(mortality_{age<critical}) >> Var(mortality_{age>critical})
- Density dependent mortality ≈ 0 for age > critical age
- We know of no cases where this is even approximately true.

Variability in recruitment increase with age for cod and decreases for trout.

Age

Hjort's Hypothesis: Weak Version

Critical period hypothesis: weak version

Var(mortality_{age<critical}) >>Var(mortality_{age>critical})
Density-dependent mortality after the critical
period does not alter ordering of year-class size.

<u>Hjort's Hypothesis: NOT</u> <u>Stochastic Mortality</u>

<u>Hjort's Hypothesis: NOT</u>

To test Hjort's hypothesis we need a model which:

- Use research surveys which estimate abundance at different ages of the same cohort.
- Estimate the variance in mortality.
- Estimate density-dependent mortality.
- Treat cohorts as random effects.
- Include measurement error.
- Obtain estimates that can be combined across populations.

The state of the art until now:

- Myers and Cadigan (1993a and b) developed method to estimate density-dependent mortality and the variance in mortality in the presence of measurement error.
- Results could be combined across populations using metaanalysis.
- Can. J. Fish Aquat. Sci. 50: 1576—1590.
- Can. J. Fish Aquat. Sci. 50: 1591 1598.

Variance in mortality after critical period low for gadoids and flatfish.

Estimated Variance

Adult Abundance (thousands)

Figure 1: Adult abundance (thousands) versus the log survival rate for some representative salmonid populations. (Note: for lake whitefish (Lake Huron population) and pink salmon (Sashin Creek, Little Port Walter, Alaska population) the recruitment units are relative year-class strength and number of fry, respectively and the abundance units are numbers of eggs and number of females, respectively.)

Adult Abundance (thousand tonnes)

Figure 3: The relationship between recruitment (top panel) and the standard deviation of survival at median ($\sigma_{\varepsilon}^2 = 0.5$, middle panel) and low ($\sigma_{\varepsilon}^2 = 0.1$, lower panel) pre-density dependent variable mortality levels. The solid line is the exact solution and the dotted line in the approximation. The recruitment is from the equation $R = 3Se^{-\frac{1}{10}S}$.

Stock	n	Р	$\operatorname{Median}\left(\frac{\hat{\sigma}_{B}^{2}}{\hat{\sigma}_{A}^{2}}\right)$	Median $\left(\frac{\mu_{R_B}}{\mu_{R_A}}\right)$
CLUPEIFORMES	27	1.02×10^{-10}	2.32	0.84
Clupeidae	26	1.11×10^{-10}	2.38	0.87
Alewife (Alosa pseudoharengus)	1	0.01	12.2	0.53
Atlantic Menhaden (Brevoortia tyrannus)	1	0.37	1.71	0.89
Gulf Menhaden (Brevoortia patronus)	1	0.15	2.60	0.64
Herring (Clupea harengus)	19	2.36×10^{-10}	2.45	0.89
Sardine (Sardinops sagax)	2	0.52	1.16	0.65
Sprat (Sprattus sprattus)	2	0.10	3.06	0.88
Engraulidae	1	0.18	2.18	0.68
Peruvian anchoveta (Engraulis ringens)	1	0.18	2.18	0.68
GADIFORMES	24	3.29×10^{-8}	2.11	0.63
Gadidae	24	$3.29 imes 10^{-8}$	2.11	0.63
Cod (Gadus morhua)	10	5.52×10^{-7}	3.38	0.62
Haddock (Melanogrammus aeglefinus)	6	0.04	1.64	0.61
Hake (Merluccius merluccius)	1	0.10	5.00	0.60
Pollock or saithe (<i>Pollachius virens</i>)	2	0.26	1.52	0.77
Red hake (Urophysics chuss)	1	0.48	1.05	0.38
S.A. Hake (Merluccius capensis)	1	0.24	1.73	0.89
Silver hake (Merluccius bilinearis)	2	0.01	3.37	0.32
Walleye pollock (<i>Theragra chalcogramma</i>)	1	0.11	2.09	1.21
PERCIFORMES	3	0.02	2.39	0.69
Percidae	1	0.66	0.74	1.32
Eurasian perch (<i>Perca fluviatilis</i>)	1	0.66	0.74	1.32
$\mathbf{Scombridae}$	2	7.61×10^{-3}	4.92	0.58
Chub mackerel (Scomber japonicus)	1	0.17	2.39	0.47
Mackerel (Scomber scombrus)	1	5.72×10^{-3}	7.45	0.69
PLEURONECTIFORMES	6	0.62	0.86	0.85
${f Pleuronectidae}$	4	0.37	1.74	0.50
Petrale sole (Eopsetta jordani)	1	0.13	3.27	0.46
Plaice (<i>Pleuronectes platessa</i>)	1	0.64	0.80	0.52
Yellowtail flounder (Limanda ferruginae)	2	0.45	1.54	2.16
Soleidae	2	0.87	0.80	2.36
Sole (Solea vulgaris)	2	0.87	0.80	2.36
SALMONIFORMES	51	4.20×10^{-3}	1.43	0.58
Esociadae	1	0.26	1.43	0.81
Pike (Esox lucius)	1	0.26	1.43	0.81
Salmonidae	50	4.41×10^{-3}	1.37	0.57
Atlantic salmon (Salmo salar)	3	0.12	3.89	0.58
Chum salmon (Oncorhynchus keta)	3	0.13	2.09	0.94
Lake Whitefish (Coregonus clupeaformis)	1	0.32	5.79	6.26
Pink salmon (Oncorhynchus gorbuscha)	15	6.04×10^{-3}	1.56	0.56
Sockeye salmon (Oncorhynchus nerka)	27	0.37	1.04	0.56
Whitefish (Coregonus lavaretus)	1	0.01	6.01	0.34
ALL SPECIES 17	111	3.3×10^{-16}	1.82	0.64

TABLE 1. Numbers of populations (n), results of Fisher's method to combine the probability (P) levels from one-sided significance tests to test if the variance in log survival below the midpoint of the observed adult abundance, $\hat{\sigma}_B^2$ is greater than the variance above the midpoint, $\hat{\sigma}_A^2$, the median values of the ratio of the two variances (Median $\frac{\sigma_B^2}{\sigma_A^2}$), and the median values of the ratio of the mean recruitment for SSB below the midpoint to the mean recruitment for SSB above the midpoint of the observed adult abundance.

n	P	$\operatorname{Median}\left(\frac{\hat{\sigma}_B^2}{\hat{\sigma}_A^2}\right)$	$\operatorname{Median}\left(\frac{\mu_{R_B}}{\mu_{R_A}}\right)$
27	1.02×10^{-10}	2.32	0.84
26	1.11×10^{-10}	2.38	0.87
1	0.01	12.2	0.53
1	0.37	1.71	0.89
1	0.15	2.60	0.64
19	2.36×10^{-10}	2.45	0.89
2	0.52	1.16	0.65
2	0.10	3.06	0.88
1	0.18	2.18	0.68
1	0.18	2.18	0.68
	n 27 26 1 1 1 19 2 2 1 1	$\begin{array}{cccc} & & P \\ \\ 27 & 1.02 \times 10^{-10} \\ 26 & 1.11 \times 10^{-10} \\ 1 & 0.01 \\ 1 & 0.37 \\ 1 & 0.15 \\ 19 & 2.36 \times 10^{-10} \\ 2 & 0.52 \\ 2 & 0.10 \\ 1 & 0.18 \\ 1 & 0.18 \end{array}$	n P Median $\left(\frac{\hat{\sigma}_B^2}{\hat{\sigma}_A^2}\right)$ 27 1.02×10^{-10} 2.32 26 1.11×10^{-10} 2.38 1 0.01 12.2 1 0.37 1.71 1 0.15 2.60 19 2.36×10^{-10} 2.45 2 0.52 1.16 2 0.10 3.06 1 0.18 2.18 1 0.18 2.18

Nonlinear key factor analysis with measurement error.

- Myers and Cadigan analysis limited to one form of density-dependent mortality – mortality proportional to log abundance, other cases VERY hard.
- We have recently developed solutions for nonlinear random effects models with measurement error for the general problem that can estimate ANY nonlinear function and ANY distribution for mortality and estimation errors.
- These methods use simulated maximum likelihood methods to in a random effects nonlinear state space model using auto-differential software.

Predictions and Preliminary Results:

- Hjort's strong hypothesis: never true.
- Hjort's weak hypothesis: approximately true for gadoids, flatfish, and freshwater percids.
- Hjort is wrong for salmonids
- Small pelagics At low abundance Hjort's weak hypothesis true, but not true for high abundance.
- Species interactions more important.

Conclusion

• We can test Hjort's hypothesis, we now have the methods and data.