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Kepler's elliptical orbit for Mars..  

http://www-gap.dcs.st-and.ac.uk/%7Ehistory/Diagrams/Kepler_orbit.gif


Imperial Mathematician  



         

24 Young of Year Grey Seals 
see Greg Breed’s talk 





Jonsen, Flemming and Myers (2005) Ecology 86: 2874-2880 
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We also carried out 
likelihood analysis 
 
This is Sir Ronald 
Fisher 
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Priors Meta-analysis of 
data from other animals 



What are State Space Models 

• Analysis of sequential data observed with error 
• Estimate unobservable states from error-prone 

observations 
• Simultaneously deal with process variability & 

estimation error 
• Accomodates non-Gaussian errors, nonlinear 

dynamics, and other complexities in the data 
• Accomodates missing observations 

 



Why State Space Models? 
• Simply one of the key “right ways” to think about 

many modern problems 
• Engineers, Economists, Oceanographers use 

this approach 
• State-space models used for: 
  Tracking moving objects 
  Shooting down missiles 
  Predicting stock market trends 
  Predicting global circulation patterns 
  Speech recognition 

 



The First State-Space Model:  
the Kalman Filter 

• Used to estimate state variables, not 
dynamical parameters 

• Can be applied to non-stationary processes. 
• Measurement noise and process noise are 

white and Gaussian. 
• Dynamics are linear.  
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State Space Models 
 
 
Measurement Equation 
- Relates imperfect observations to 
  true position 
 

- Estimate ARGOS 
  error with ε 
 
Transition Equation 
 
- Predicts next position from 
  behavioral model 
 

 

yt = h (αt , εt) 

observed  
location 

Error function 

true location 

 αt = ƒ (αt-1, ηt ; γ)  

parameters movement function 



αt = ƒ (αt-1, ηt ; γ)  

  

The state variable is random variable, and should NOT be  
thought of as a simple number. The above equation can be 
better interpreted as the probability of a given state value αt.  

Thus, we write the state as a Greek letter, αt. Consider the  
simplest model where the mean for the next time period is a  
simple multiple of this years state. 

What is important about the transition equation? 

p(αt| αt-1) = N (αt-1 γ ,σ)  



αt = ƒ (αt-1, ηt ; γ)  

  

mean[t] <-  f(alpha[t-1] ; γ)  

alpha[t] ~ dlnorm (mean[t], sigma)  

How is this programmed with BUGS 

The state variable is random variable, and should NOT be  
thought of as a simple number. We write the state as a greek  
letter, αt 

This symbol means “is distributed as”, and implies that alpha[t] is a random variable. 

What is important about the state equation? 



t = 1 
1st location = release point 

 
eg. release location estimated 

with GPS  

Prior 

Prediction 
Apply dynamics (transition eqn) 

Observation Observe a location with error 

Update 
Integrate over predicted &  

observed densities 
(Bayes Rule) 

Prior t = 2 
Updated prediction becomes 

prior for next time step 



Software 

WinBUGS: Bayesian Analysis Using Gibbs 
Sampling 

 
Bayes Rule 
 
 
 
This is the innovation likelihood 
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Movement (Transition) Equation 
- First difference correlated random walk 
 
dt  =  γT(θ)dt-1  +   N2(0,Σ) 
αt = αt-1+ dt 
 
Observation Equation 
 
yt = t-distribution (αt , σt, υt ) 
 
 
Plus an algorithm to regularize estimated 
locations in time 



Movement (Transition) Equation 
 
dt  =  γT(θ)dt-1  +   N2(0,Σ) 
αt = αt-1+ dt 

αt 
αt-1 

dt-1 
dt 

θ (turn angle) 



Observation Equation 
 
yt = t-distribution (αt , σt, υt ) 

αt 

yt 









Sources of Uncertainty 
• Estimation error 

– Data observed with 
error 

– Errors can be non-
Gaussian 
 

Radio or acoustic 
telemetry 

Satellite telemetry 
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Argos location errors 

data from Vincent et al. 2002 



Argos errors follow  t-distributions:  
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Jonsen, Flemming, Myers, Ecology, 2005 
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Tag Precision 
 
yt = t-distribution (αt ,cσt, υt ) 

σ for each location class is assumed 
known (Vincent et al. 2002, Jonsen et 
al 2005) 
 

c is an estimated parameter that 
scales the variance to each tag 
 
Best tags are 1000’s of times more 
precise than the worst tags 
 
Best tags in a single lot can be 100’s of 
times more precise than worst tags 
from a lot  
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State-space models allow you to think about things, that 
it is very difficult to think about otherwise 





It is essential to treat groups of 
animals simultaneously for 
maximum utility of the data. 

 



Leatherback turtles are unique in that they 
expose their pineal spot to sunlight. 



Turtles are close to the surface during the  
day during migration 

Night Day 

James et al. in review 



Examining Diel Migration 
Behaviour in Leatherbacks 

 

Jonsen, James Myers. in review. Journal of Animal Ecology 











Results are consistent with the hypothesis that 
the pineal spot improves navigation. 



Dynamics of behavior is very nonlinear, 
to determine hot spots and foraging 

• Solution: Markov switching models between 
behavioral modes 

• Dynamics within a behavioral mode is linear 



State-Space Switching Models 

Federal Reserve Bank of St. Louis Review, July/August 2005, 87(4), pp. 435-52. 
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Summary 
• State-space models allow you to think about 

problems which have no conventional solution 
• Fundamentally different approach to analysis of 

complex, error-prone data emphasis on 
estimation of “true” states, biological 
parameters and uncertainty 

• Models can be fit to other types of sequential 
movement data (GPS, Archival tags) 
 



The Future 

• Better incorporation of oceanographic data 
• Model testing, statisticians do NOT know 

how to compare models with non-
Gaussian errors 

• More “user friendly” (i.e. less “user angry” 
methods). This would include an easy to 
use library with a variety of possible 
behaviour.  



 
Pew Global Sharks Assessment      http://fish.dal.ca 

Critical Spatial/Temporal  
Models Tools 

Ransom A. Myers (RAM) 
Dalhousie University,  
Canada 

FMAP (Future of Marine Animal Populations)                       Lenfest Foundation 
Sloan Census of Marine Life                   



What was the most common large animal in 
the world? (perhaps this one was) 



Loss of sharks in the Gulf of 
Mexico 

300 fold decline – no one noticed 

Oceanic Whitetip captures per 10,000 hooks 
1950’s        1990’s 

Baum and Myers, 2004 Ecology Letters 



Circumstantial 
evidence of 

oceanic whitetip 
sharks being 

common in the 
Gulf of Mexico 



Critical Modeling Tools 

• Generalized linear models with negative 
binomial error 

• Generalized linear mixed effects models to 
standardize old and new surveys 



a. Northern Gulf of Mexico bottom shrimp trawl survey 
b. NMFS offshore bottom trawl survey 
c. NMFS inshore bottom trawl survey 
d. Southeast U.S. SEAMAP bottom shrimp trawl survey 
e. North Carolina Institute of Marine Sciences longline survey 
f. Crooke commericial longline data 
µ. Meta-analytic mean 



Loss of Dusky Sharks in the Eastern US 



Consequences of “protection” since 1993:  
Rate of decline has increased: 



Critical Modeling Tools 

Surveys vary in time, and the sharks move 
seasonally up and down the coast 

 
We used a generalized linear mixed effect model 

with negative binomial errors to describe the 
seasonal movement up and down the coast by 
allowing the seasonal harmonics to be an 
interaction, i.e. latitude and harmonics. 

  



Reduce fishing mortality for sensitive 
species for survival of the species 

Dusky shark. Source: NMFS 

Source: Myers and Worm 2005.  
Phil. Trans. R. Soc. B 360:13-20 



Critical Modeling Tools 

• Calculus 
• Generalized linear models 



Hammerhead sharks 

Sphyrna lewini 
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Science. Jan. 2003. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm,  
S.J. Harley, P.A. Doherty 



Results 
R

el
at

iv
e 

Ab
un

da
nc

e 



Critical Modeling Tools 

• Development of a new regression model 
that does not use “zeros” (we believe the 
fishermen sometimes lie).  

• Robustness analysis that show results are 
robust to alternative assumptions 



TNB 
NB NB 

NB 



1 Caribbean      6 NE Coastal 
2 Gulf of Mexico      7 NE Distant 
3 Florida              8 Sargasso 
4 S Atlantic Bight      9 S America 
5 Mid Atlantic Bight 

Hammerhead spp. White Tiger Coastal spp. 

Oceanic whitetip Thresher spp. Mako spp. Blue 



Same results for trawl surveys in Gulf of 
Mexico 

Shepherd and Myers Ecology Letters 2005 



Same results for trawl surveys in Gulf of Mexico 

Shepherd and Myers Ecology Letters 2005 



Decline of Mediterranean Sharks 

“Tonnara di Camogli” 

By catch associated with a Tuna Trap 

In Ligurian Sea 



Decline of Hammarhead sharks 

Boero F. & A. Carli 1979 – Boll. Mus. Ist. Biol. Univ. Genoa (47) 
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“Tonnarella di Baratti” 

By catch associated with a Tuna Trap 
In Tirrenian Sea 

Decline of Mediterranean Sharks 
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http://www.fishbase.org/Photos/PicturesSummary.cfm?ID=4996&what=species
http://www.fishbase.org/Photos/PicturesSummary.cfm?StartRow=2&ID=854&what=species


Critical Modeling Tools 

• Repeat analysis world wide using a meta-
analytic approach 
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Critical Modeling tools: 

• Generalized linear models to standardize 
historical surveys, e.g. diurnal differences 

• Mapping historical surveys on recent 
Stratified Random design 
 































































Critical Modeling Tools 

• Plot the data and think for yourself 



Common patterns of decline 

Myers and 
  Worm (2003) 

0 

C
at

ch
 p

er
 1

00
 h

oo
ks

 

4 
8 

0 
4 
8 

0 
2 
4 

0 

4 

8 

0 

4 

8 

0 

4 

8 

0 
4 

8 

0 

4 

8 

0 

4 

8 

10 

1960 1980 2000 1960 1980 2000 1970 2000 

1970 1980 1960 2000 1980 1960 

1955 1965 1975 

2000 2000 

1955 1965 1975 1960 1970 1980 

Atlantic    Atlantic   Atlantic 

   Indian      Indian      Indian 

Pacific Pacific Pacific 



Critical Modeling tools: 

• Nonlinear Mixed Effect Models to Describe 
Common Patters 
 



Totally Stupid Reasons for not 
Believing the Obvious 

• You ignore research surveys.  
• Removing Large Predators Couldn’t 

Possibly Affect Survival of Other Fish. 
• Fishing Couldn’t Possibly Affect the Size of 

Tuna. 
• Fishermen are so stupid they cannot use 

satellite data to find tuna. 
• Fishermen are so stupid that they don’t 

improve their gear.  



These estimates are conservative:  Fishermen are smarter  
(GPS, satellite information,  ACDP (Acoustic  

Current Doppler Profiler)). 

Locations of a leatherback turtle over a two week period tagged by 
my student Mike James that maintains its position within a cold core 
ring (somehow). 



Study area 

Hawaii 1950s 
1990s 



Analysis repeated using 
independent research data  

 

Ward and Myers 2005 Ecology 



These estimates are conservative: 
(fish are smaller) 
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Yellowfin tuna – equitorial Pacific Ward and Myers 2005 Ecology 
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Critical Modeling tools: 

• Generalized linear mixed effects models to 
standardize historical surveys for depth 
and soak time 
 



 

Loss of sharks in the Gulf of Mexico 
300 fold decline – no one noticed 

Oceanic Whitetip captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 



What about prey fish? 

Brama brama 
Atlantic pomfret 

Illustration taken from the book "Encyclopedia of Canadian Fishes" by Brian W. Coad with  

Henry Waszczuk and Italo Labignan, 1995, 

http://www.nature.ca/


Explosion of Pomfrets in the Gulf of Mexico 
~1000 fold increase – no one noticed 

Pomfret captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 



The Rise of the Marine 
Mesopredators 

Pelagic Sting Ray 
Pteroplatytrygon violacea 

Photos from Phillip Colla, photography 



Explosion of Pelagic Stingrays in the Gulf of Mexico 
~1000 fold increase – no one noticed 

Pelagic stingray captures per 10,000 hooks 
1950’s        1990’s 

Many thanks to NMFS for data and advice 
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Major shrimp stocks in the North 
Atlantic 

0 400
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Cod and shrimp biomass in the North Atlantic:  
time series 
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Step 2: Random-effects meta-
analysis 
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Critical Modeling Tools 

• Random effects meta-analysis 
• Corrections for temporal autocorrelations 
• Corrections for spatial autocorrelaitons 
• Modeling of environmental (bottom up) 

effects 



Blue marlin 
  (Makaira 
  nigricans) 

Sailfish 
  (Istiophorus 
  albicans) 
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Critical Modeling Tools  

• Hierarchical Bayes State-Space Models  
   



Loss of species density per decade 

• Displayed is the number of tuna and billfish 
species that are found on a standard 
longline with 1000 hooks 

• The time series runs from 1952-1999 
• It shows how large hotspots are 

disappearing over time and how few 
concentrations of diversity remain today 

 
After data from: Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (2005)  

      Global patterns of predator diversity in the open oceans. Science Aug. 2005. 
 



1950s 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-1369 
 



1960s 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-136  
 



1970s 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-1369 
 



1980s 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-13  
 



1990s 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005. Science 309:1365-136  
 



Critical Modeling Tools: Rarefaction 
diversity 

•Compare diversity between cells with different sample 
size 
•Species richness: Expected number of species per 50 
individuals 
•Species density: expected number of species per 1000 
hooks 



Contractions in range sizes? 



 



 



 



Tagging also shows bluefin restricted to 
N Atlantic 

Source: Block et al. 2005. Nature 434: 1121-1127 



Global decline in ocean predator 
diversity 

• Increasing 
catches 

• Decreasing 
diversity 

• Long-term 
decline linked to 
fishing 

• Yearly variability 
linked to climatic 
changes 

Worm, Sandow, Oschlies, Lotze, Myers 2005. 
Science 309:1365-1369 

 



ENSO affects diversity across 
entire Pacific 

Species richness                 Blue marlin catch rates 

Source: Worm, Sandow, Oschlies, Lotze, Myers 2005.  
Science 309:1365-1369 

 



Understand oceanographic drivers 
of diversity 

Patterns of 
diversity were 
explained by 
– Mean 

temperature 
– Fronts and 

eddies 
– Oxygen 

Source: Worm et al. 2005. 
 Science 309:1365-1369 

 



Critical Modeling Methods 

• Spatial regression with anisotropic 
spatially correlated errors 

• We used SAS Proc MIXED (and the 
generalized linear model additions) which 
are very fast, and easy to use. 



Use remaining hotspots for global 
conservation 

• Consistent patterns 
of species richness 
and density 

• Five major hotspots: 
– U.S. east coast 
– Hawaiian chain 
– Southeast Pacific  
– Australian east coast 
– Sri Lanka 

Source: Worm et al. 2005. 
 Science 309:1365-1369 

 



Protect diversity hotspots in 
national waters • Special 

places 
where many 
species 
aggregate 
 

• Key habitats 
 

• Food supply 

Hotspot 

Coldspot 

Worm Lotze Myers 2003. 
 PNAS 100:9884-9888 



Validate hotspots across species 
groups 

Source: Worm et al. 2005. 
 Science: 309:1365-1369 



Simulating area closures 
• Hotspot closure 

reduces catch of 
threatened 
species 

• Displacement 
issues must be 
considered 

• Fishing effort 
needs to be 
reduced as well 
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Worm Lotze Myers. 2003. 
 PNAS 100:9884-9888 



Critical Modeling Method 

• Simulation methods 



The First Collective Act of  
Humanity was to save the  
great whales – 
  
despite massive denial 
 
– we can do 
the same for the remaining 
virgin areas of the oceans  
and for the great sharks. 



USA Bay Scallops  
Landings 



Loss of softshell clams south of Long Island 
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Meta-analysis of cownose ray trends 



Increase in small sharks: sharpnose shark 



Strong, W.R. Jr; Snelson, F.F. Jr; Gruber, S.H. Copeia 1990, 836-839 

Hammerhead eating stingray 



Photo by Demian Chapman 
D. D. Chapman and S. H. Gruber, 2002 Bull. of Mar. Sci. 70:  947–952  

GREAT HAMMERHEAD SHARK PREDATION UPON  
 SPOTTED EAGLE RAY  



Loss of hammerheads from surveys 

Shepherd and Myers, 2005, Ecology Letters 



 

 



Appendix 1. continued 
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Experimental Results of Pete Peterson and 
Sean Powers in North Carolina 
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Loss of Bay Scallops with Cownose 
Ray Fall Migration 
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Mortality of almost 100% during fall 
migration of cownose rays 
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Excluding cownose rays allow the 
survival of bay scallops.  
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Trophic Cascades: 
Consequences of the  
loss of top predators  
may be greater than  
we think 



The First Collective Act of  
Humanity was to save the  
great whales – 
  
despite massive denial 
 
– we can do 
the same for the remaining 
virgin areas of the oceans  
and for the great sharks. 



Past use of State-Space Models for 
Movement 

 
• Models by David Brillinger in 1998 showed  

migration across oceans using a 
directional random walk on a sphere.  

• John Sibert used “almost linear” Kalman 
filter models to improve popup tags 
locations (see U. of Hawaii website) 

• Morales,  Haydon, Friar, Holsinger, Fryxell 
(Ecology 2004) used hidden Markov 
models 
 



Blue marlin 
  (Makaira 
  nigricans) 

Sailfish 
  (Istiophorus 
  albicans) 
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FMAP (Future of Marine Animal Populations)  
part of the Sloan Census of Life http://www.fmap.ca 
Pew Global Sharks Assessment      http://www.globalsharks.ca 

Not only have large predators declined by at least a fact   
10, but mesopredators have often increased by at least a 
factor of 10.  



(1)Friedlander & DeMartini (2002): Hawaiian reefs;  
(2) Jennings & Blanchard (2004): North Sea;  
(3) Christensen et al. (2003): North Atlantic; 
(4) Myers & Worm (2003): global;  
(5) Ward & Myers (2003): North Pacific;  
(6) Tang et al. (2003): Bohai Sea;  
(7) Baum & Myers (2004): Gulf of Mexico; 
 (8) Vacchi et al. (2000): Mediterranean Sea;  
(9) Baum et al. (2003): Northwest Atlantic.  

Source: Myers and Worm 2005.  
Proc. R. Soc. Lond. B (2005) 



FMAP (Future of Marine Animal Populations)  
part of the Sloan Census of Life http://www.fmap.ca 
Pew Global Sharks Assessment      http://www.globalsharks.ca 

Not only have large predators declined by at least a fact   
10, but mesopredators have often increased by at least a 
factor of 10.  



Special Case of State-Space 
Models: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous 
observed node per time slice. 

• α: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P(α1 )  
– The transition model P(αt | αt-1 ) 
– The observation model P( Yt | αt ) 
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State Space Models 
 
 
Maximize likelihood  
to estimate model parameters 
γ  
 
 
Use Markov Chain  
Monte Carlo methods 
in WinBugs 
 

yt = h (αt , εt) 

observed  
location 

Error function 

true location 

 αt = ƒ (αt-1, ηt ; γ)  

parameters movement function 
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Location Estimates 
 
 
• Estimate locations using first-

difference CRW 
 

• Removes error & regularizes 
time step 

 
• 480 minute time step (3 d-1) 

 
• No switching 

 
 



This represents a different way of 
thinking 

 



How are animals different from 
particles? 

• They have free will 
• They have “inertia”, they tend to keep 

going the same direction. 
• They have different behaviours 



Why State Space Models 

• This is simply one of the key “right ways” 
to think about many key modern problems: 

• Engineers, economists, oceanographers, 
and speech recognition scientists, use 
modifications of this idea; 

• If you want to shoot down a missile, you 
use a state space model. 



When migrating  
leatherbacks spend 
more time close to 
the surface during 
the day. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From James, 
Ottensmeyer, and 
Myers (in review) 



Economometrics: 

 



How our analysis differs: 
• We use a large amount of prior information on the 

accuracy of locations, i.e. they are described by 
“heavy tailed” distributions. 

• We model the performance of each transmitter, 
because there are very clear differences among 
transmitters. 

• We use the first state-space model of switching for 
movement implemented for an ecological problem. 

• First meta-analytic approach which combines 
information from different tracts using a hierarchical 
random-effects meta-analytic approach. 



Making Switching Models Work 

• Meta-analysis greatly improves the 
estimates because relative few transitions 
are observed for each track. 
 



• In the Bayesian approach, both the 
parameters ?? and the values of the states 
(α1, α2, ...,αT ) are viewed as random 
variables. 
 



What is Kalman Filtering Used For? 

• What is it used for? 
• Tracking missiles 
• Tracking heads/hands/drumsticks  
• Extracting lip motion from video  
• Lots of computer vision applications  
• Economics 
• Navigation 



First Measurement 



Second Measurement 



Combine Estimates 









Switching Models 

• Does not work well on one animal 
• Works well if animals have the same 

switching parameters (this is the same as 
a fixed effect meta-analysis).  

• We would like to have a hier. model, 
where parameters are random variables.  



Applications 

GPS Satellite orbit 
computation 

Active noise  
control 

Tracking 



Examples - Target tracking  
The state process consists of the position, velocity, 

and acceleration coördinates (9 dimensions in 
all) of a ballistic or steered target (i.e rocket or 
missle); randomness in the state process may 
come from interactions with the atmosphere, or 
from evasive maneuvers. Observations consist 
of data from radar and infrared sensors, and 
prior knowledge of the initial location of the 
target; observation noise comes from 
background noise sources such as clutter, or 
internal thermal noise in the sensor.  



Examples: Weather and Ocean 
Prediction  

 
Nonlinear filtering theory allows new data to 

be assimilated into the differential 
equations which drive a numerical model 
of the ocean and/or atmosphere.  



Examples 

• Asset Pricing - Each component of the 
state is the value of some asset or 
derivative, or else an underlying 
interest rate; the observations consist 
of data on specific sale prices of 
related assets at a sequence of times.  
 



Different short behavors  



Why state-space models? 

• Only method that models time series 
structure with missing values. 

• Models estimation error. 
• Models non Gaussian errors. 
• Models nonlinear relationships. 



Further advantages 

• Switching models  



What about Levy flights? 
Heuristic, but not mechanistic. 



State space models 

• State variables 
• parameters 
• forcing functions 
• rules of change 
• the state variables in the future depend 

upon the current state, the parameters 
(constants), any external perturbations 
(the forcing functions), and the rules of 
change 



State variables 

• The complete description of the current 
state of the system -- complete enough 
that you can “rebuild” the system with this 
amount of information 

• examples - the number of animals in the 
population - the age structure of a 
population, the presence or absence of 
species in a community matrix ….  



Parameters 

• Do not change over time and are the 
constants that describe the rates or limits 

• intrinsic rates of growth, carrying capacity, 
survival rates, fecundity rates etc. 



Forcing functions 

• Natural or anthropogenic factors that affect 
the state 

• weather impacts on survival or 
reproduction 

• harvesting 
• These are “external” to the model -- that is 

we don’t attempt to describe the dynamics 
of these factors 



Rules of change 

• The equations that describe how the state 
variables change over time in relation to 
the current values of the state, the 
parameters, the the forcing functions. 

• St+1 = f(St,p,ut) 



A simple state space model 
Logistic growth 

• Numbers next year are number this year + 
net production, minus removals 

• Nt+1=Nt + rNt(1-Nt/k)-Ct 

• N is the population size 
• r is the intrinsic rate of increase 
• k is the carrying capacity 
• C is the catch 



Quiz #1 

• Take a piece of paper 
• From this logistic growth model 
• 1 - what are the state variable(s) 
• 2 - what are the parameter(s) 
• 3 - what are the forcing function(s) 
• 4 - what are the rules of change 



The answer 

• The state variable is the population size 
• The parameters are the intrinsic rate of 

increase r, and the carrying capacity k 
• The forcing function is the catch 
• The rules of change is the equation 



Components of rules of change 

• Logical relationships 
– statements that are true by definition 
– numbers next year = numbers this year + 

births - deaths + immigration - emigration 
– also known as tautologies 

• Functional relationships 
– specify the relationship between a rate and a 

state variable or something related to a state 
variable (survival as a function of density) 



For logistic growth model 

• A logical relationship 
– number alive next year is number alive this 

year plus net production minus catch 
• The functional relationship 

– net production = rNt(1-Nt/k)   



• STATE PROCESS 
• The primary object of study is a Markov process, 

X, whose probability law is known, but which 
cannot be observed directly. It serves as a 
model for the true state of the system under 
study; hence X is called the state process. The 
simulation below shows a real-valued process; 
in practice X may be high-dimensional, with 
values in a manifold or metric space.  



• OBSERVATIONS 
• At certain times t[1],t[2],… (perhaps 

continuously), some function of the state, 
corrupted by noise, is observed. For example, 
observations might be of the form  

• Yt[n]=h[Xt[n],Vt[n]]  
• where h is a continuous function, and 

Vt[1],Vt[2],… are independent random variables, 
independent of X.  



Minimise the difference between the observed (S) and implied (Σ) 
covariances by adjusting the path coefficients (B)  
 

The implied covariance structure:  
 x = x.B + z 

x = z.(I - B)-1 

x : matrix of time-series of Regions 1-3 
B: matrix of unidirectional path coefficients 
 
Variance-covariance structure: 

xT . x  = Σ  = (I-B)-T. C.(I-B)-1 
where C = zT z 

 
xT.x is the implied variance covariance structure Σ 
C contains the residual variances (u,v,w) and covariances 
 
The free parameters are estimated by minimising a [maximum likelihood] 

     

Structural Equation Modelling 
(SEM) 
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Modeling Sequential Data 
 Sequential data arises in many areas of science & 

engineering 

 Types of data sources: 

Time series, generated by a dynamical system  

Sequence generated by one-dimensional spatial 
 process 

 On- line analysis vs. Off-line analysis  



Classical Solutions 
• Classic approaches to time-series prediction 

– Linear models: ARIMA(auto-regressive integrated moving 
average), ARMAX(autoregressive moving average 
exogenous variables model) 

– Nonlinear models: neural networks, decision trees 

 
• Problems with classic approaches 

–  prediction of the future is based on only a finite window  
–  it’s difficult to incorporate prior knowledge   
–  difficulties with multi-dimensional inputs and/or outputs   

 

 



State-Space Models 
• Assumptions:   

– There is some underlying hidden state of the world (query) that generates the 
observations (evidence), and evolves in time, possibly as a function of our 
inputs 

– Models are first-order Markov, i.e.,  
              P(Xt| X1:t-1) = P(Xt | Xt-1)  
– observations are conditional first-order Markov  
              P(Yt | Xt , Yt-1) = P(Yt | Xt)  
– Time-invariant or homogeneous 
 

• The goal: computing of the belief state:  
 The belief on the hidden state of the world given the observations up to the 

current time y1:t and inputs u1:t to the system, P( X | yS1:t, u1:t )  
 
• State-space model must define a prior P(X1), a state-transition function, 

P(Xt | Xt-1) , and an observation function, P(Yt | Xt) 
  

 



SSM: Representation 

Hidden Markov Models (HMMs):  
 Xt is a discrete random variables 
 
Kalman Filter Models (KFMs):  
 Xt is a vector of continuous random variables 
 
Dynamic Bayesian Networks (DBNs): 

more general and expressive language for representing 
state-space models 



SSM: Inference 
• A state-space model defines how Xt generates Yt and Xt.  
• The goal of inference is to infer the hidden states (query) 

X1:t given the observations (evidence) Y1:t.  
 

 



SSM: Inference (cont.) 
• Inference tasks: 

– Filtering (monitoring): recursively estimate the belief state using Bayes’ 
rule 

• prediction: computing P(Xt | y1:t-1 ) 
• updating: computing P(Xt | y1:t ) 
• throw away the old belief state once we have computed the prediction 

(“rollup”) 
– Smoothing: estimate the state of the past, given all the evidence up to the 

current time 
• Fixed-lag smoothing (hindsight): computing P(Xt-l | y1:t ) where  l > 0 is the lag 
• Fixed-interval smoothing (offline): computing P(Xt | y1:T ) for all  

– Prediction: predict the future 
• Lookahead: computing P(Xt+h | y1:t ) where h > 0 is how far we want to look 

ahead 
– Viterbi decoding: compute the most likely sequence of hidden states 

given the data 
• MPE (abduction): x*

1:t = argmax P(x1:t | y1:t )  
 

1 t T≤ ≤



SSM: Learning 
 

• Parameters learning (system identification) means estimating from data 
these parameters that are used to define the transition model P( Xt | Xt-1 ), 
the observation model P( Yt | Xt ) & the prior P(X1)  

• The usual criterion is maximum-likelihood(ML)  
• The goal of parameter learning is to compute 

– θ*
ML = argmax θ P( Y| θ) = argmax θ log P( Y| θ) , where  

 
 
 

– Or θ*
MAP = argmax θ log P( Y| θ) + log P(θ)   if we include a prior on the 

parameters 
– Two standard approaches: gradient ascent and EM(Expectation Maximization) 

 
• Problem: Hidden variables complicate finding of the globally optimal 

parameters  
• Structure learning: more ambitious 
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HMM: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node 
per time slice. 

• X: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P( X1 )  
– The transition model P( Xt | Xt-1 ) 
– The observation model P( Yt | Xt ) 

X1 

Y1 

X2 

Y2 

X3 

Y3 

X4 

Y4 



HMM: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node 
per time slice. 

• X: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P( X1 )  
– The transition model P( Xt | Xt-1 ) 
– The observation model P( Yt | Xt ) 

• HMM is the simplest DBN 
– a discrete state variable with arbitrary dynamics and arbitrary measurements 
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Special Case of State-space 
Models: Hidden Markov Model 

• one discrete hidden node  and one discrete or continuous observed node per 
time slice. 

• α: hidden variables 
• Y: observations 
• Structures and parameters remain same over time 
• Three parameters in a HMM: 

– The initial state distribution P(α1 )  
– The transition model P(αt | αt-1 ) 
– The observation model P( Yt | αt ) 
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HMM: Hidden Markov Model 
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KFM: Kalman Filter Model 
• KFM has the same topology as an HMM 
• all the nodes are assumed to have linear-Gaussian distributions  
  
 x(t+1) = A*x(t) + v(t),  
   v ~ N(0, Q) : process noise, x(0) ~ N(X(0), V(0))  
    y(t) = C*x(t) + w(t),  
       w ~ N(0, R) : measurement noise 
• Also known as Linear Dynamic Systems (LDSs) 

– a partially observed stochastic process  
– with linear dynamics and linear observations: f( a + b) = f(a) + f(b) 
– both subject to Gaussian noise 

• KFM is the simplest continuous DBN 
– a continuous state variable with linear-Gaussian dynamics and 

measurements 

X1 

Y1 

X2 

Y2 



All Roads Lead From Gauss                              
1809 

•             “ … since all our measurements and observations are nothing more 
•                 than approximations to the truth, the same must be true of all 
•                 calculations resting upon them, and the highest aim of all 
•                 computations made concerning concrete phenomenon must be to      
•                 approximate, as nearly as practicable, to the truth. But this can be 
• accomplished in no other way than by suitable combination of more  
• observations than the number absolutely requisite for the determination of  
• the unknown quantities. This problem can only be properly undertaken  
• when an approximate knowledge of the orbit has been already attained,  
• which is afterwards to be corrected so as to satisfy all the observations 
• in the most accurate manner possible.” 
•   
•  - From Theory of the Motion of the Heavenly Bodies Moving about the      

 Sun in Conic Sections, Gauss, 1809 
•                   



What does a Kalman filter do ? 
• The Kalman filter propagates the conditional density in 

time. 
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How does it do it ? 
 

• The Kalman filter iterates between two steps 
– Time Update (Predict) 

•  Project current state and covariance forward to the next 
time step, that is, compute the next a priori estimates. 

– Measurement Update (Correct) 
• Update the a priori quantities using noisy measurements, 

that is, compute the a posteriori estimates. 
 
 

• Choose Kk to minimize error covariance 
( )−− −+= kkkkkk xMxKyy ˆˆˆ



You can ask questions and think 
about questions you can not 

otherwise. 

• Circle of confusion 
• Turtle speed at night 
• Are there modes, or “behavioural states” in 

their behaviour.  
 
 



Random Effect Model 



Weights in Canadian waters  

 
 

• live-captured at sea and turtles  
  Turtles are  
    33% heavier in Canadian coastal  
   areas versus on the nesting  
   beach 

Nesting female morphometrics: St. Croix, U.S.V.I. 
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147. 
Lines fit by constant slope analysis of covariance after log transformation. 
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Male leatherback movements 
 
• not previously described 
 

• annual migratory cycle  
  that includes movement  
  between temperate  
  foraging areas and tropical  
  breeding areas 
 
James, Eckert and Myers  
Marine Biology (in press) 
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Derived Variables 
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A Switching SSM 
Switching model, estimates switches b/w 2 

behavioural states 
La
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σ1     = 0.21 deg lon 
σ2     = 0.09 deg lat 
θf      = 3.06    rad  
θm    = -0.24   rad 
ρs(f)    = 0.54 
ρs(m)  = 0.82 



Loggerheads 

Leatherbacks 

Lewison et al. 2004 
Ecology Letters 



Photo by Matthew Godfrey 







Mike James  
Andrea Ottensmeyer 





Identification of high-use areas and threats to leatherback sea turtles  
in northern waters 
 
James, Ottensmeyer and Myers 
Ecology Letters (2005) 



Weights in Canadian waters  

 
 

• live-captured at sea and turtles  
  Turtles are  
    33% heavier in Canadian coastal  
   areas versus on the nesting  
   beach 

Nesting female morphometrics: St. Croix, U.S.V.I. 
Boulon et al. 1996. Chelonian Conserv, Biol. 2:141-147. 
Lines fit by constant slope analysis of covariance after log transformation. 







Questions? 

• What are the fundamental changes in a 
community that occur after the apex 
predators are removed? 

• Have lower trophic levels responded?  
• How can we carry our a meta-analysis in 

different communities that may not be 
independent?  



Major shrimp stocks in the North 
Atlantic 
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Cod and shrimp biomass in the North Atlantic:  
time series 
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Step 2: Random-effects meta-
analysis 
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Source: Myers and Worm 2005.  
Proc. R. Soc. Lond. B 
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There is much less than 10% of cod left -  



Fitting a simple 
model to crazy 
data can yield 
reliable, and very 
powerful 
conclusions 



With training, “experts” can ignore the 
most obvious of data: 

1872 - Man's head and leg and dolphin in stomach 
1872 – 8 Great White Sharks reported caught 
1888 - Woman's body and lamb in stomach 
1894 - Preserved at Zagreb Nat. Hist. Mus. 
1926 - Woman's shoes, laundry in stomach 
1946 - Pig of 10 kg in stomach 
1950 - Encounter during eating a dead calf 
1954 - Attack on boat 
1975+ -No sightings. 
                                         Soldo and Jardas, Periodicum Bologorum, 2002 
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Loss of haddock on 
the Grand Banks –  
data from research 
surveys 
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Identification of high-use areas and threats to leatherback sea turtles  
in northern waters 
 
James, Ottensmeyer and Myers 
Ecology Letters (2005) 



Global changes in species 
diversity 
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