Model Choice and Model
Validation

AIC, BIC, DIC, cross validation
and all that



Ram’s tip for today:

Generate models on part of the
data, and test them on the rest.



“... the simple idea of splitting a sample In
two and then developing the hypothesis on
the basis of one part and the testing it on
the remained may perhaps be said to be
one of the most seriously neglected ideas

IN statisticS.” G. A. Barnard as quoted in Common Errors in
Statistics by Good and Hardin.



You need a theory.

« Without a working theory, then all
deviations look the same. You cannot
target the questionable data.



You need several theories:

 Chamberlin ([1890] 1965) advocated the
concept of “multiple working hypotheses.”
Here, there isvno null hypothesis; instead,
there are several well-supported
hypothesesv(equivalently, “models”) that
are being entertained.

 Chamberlin, Thomas. [1890] 1965. “The
Method of Multiple Working Hypotheses.”
Science 148:754-9.



Methods of Validation

* Independent verification (new data from
same or other population).

o Splitting sample (one for callibration , and
the other for verification)

 Resampling (this is difficult with auto-
correlated data).



Independent verification

e Best approach, use completely
Independent data to test model using new
data, historic data, or data from other

populations.



Sample splitting

One part to generate hypotheses, one part
to test

Hold back 1/3 or ¥4 of data for validataion

This is REALLY simple, and thus easy to
explain, and harder to make subtle errors
(as It Is easy to do In bootstrapping).

There Is a small loss of efficiency, but it Is
not too bad.



Resampling

Bootstrapping (sampling with replacement)

K-fold analysis (divide data into K
samples)

Leave one out analysis

Jackknife (a version of leave one out,
where the analysis is done with all data).

Delete-d (see aside k% for testing).



In any resampling method
suggests that model Is unstable,
then you reformulate model.



It IS Impossible for semi-complex
data sets to generate and test

hypotheses on the same data.

An example, | am interested In what
factors affect cod recruitment on Georges
Bank.

| have a 30 year time series of cod
recruitment data.

| have access to 10 environmental
variables with data on each month.

| consider 3 possible year lags.

This Is 10*12*3 possible correlations with
single variables.




 \We have approximately 20*12*3 squared
2 factor combinations



But 1t 1Is much worse that that

 These time series are generally auto-
correlated, I.e. there are fewer degrees of
freedom than you think.



Cod versus shrimp catches in
all NAFO areas combined
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Cod versus lobster catches
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Cod versus crab catches
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Major shrimp stocks in the North
Atlantic

Included

No data




Similar cod diet across regions

16

14 ] B
0 12 _
3 10 -  Min
S 8 - H Mean
o 6
= 1 Max
5 4
g 2

O ]

(\b\ X & X
. 2
Q}Q

O(‘<‘S\ource: Palsson 1983, Boerje et al. 1987
< Magnusson and Palsson 1991, Rodriguez-Marin and del Rio 1999
Lilly et al. 2000, Berenboim et al. 2000, Torres et al. 2000



Cod and shrimp biomass in the North Atlantic:
time series
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Cod and shrimp biomass in the North Atlantic:
correlations
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Step 1: Dealing with
autocorrelation and
measurement error

Simple analysis Corrected analysis
Region r N r* N* p*
Labrador -0.746 23 -0.827 4.8 0.054
N. Newfoundland 0.911 13 0.976 33 ooz
Flemish Cap -0.526 12 -0.607 6.3 0.161
N.Gulf of St. Lawrence -0.708 19 -0.827 3.4 0.165
Eastern Scotian Shelf 10.856 21 10,982 35 0004
Gulf of Maine -0.131 31 -0.147 9.3 0.701
Iceland -0.459 33 -0.63 8.2 0.075
Barents Sea -0.412 18 -0.635 11.7
Skagerrak 0.788 11 0.808 5.0 0.061

Source: Hedges & Olkin 1985, Pyper & Peterman 1998



Step 2: Random-effects meta-
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Step 3: Testing environmental
forcing

Shrimp — temperature P=0.174 | Cod — temperature P=0.001
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Correlation

Step 4. Examining spatial
correlation

e Cod recruitment is correlated on scales <500
km

« Stocks are not entirely independent

e Sensitivity analysis shows that this does not
change results

Cod Cod (NE Atlantic) Cod (NW Atlantic)
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Step 5: Testing for latitudinal

Cod — shrimp
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Prediction Error

Bias, Variance, and Model
Complexity

Hizh Bias

Low Variance

Low Bias
Hizgh Varia

------- i

Test Samp

/

Training Sainple

Low Hig

Model Complexity

1oe

e Bias-Variance trade-
off again

- Generalization: test
sample vs. training
sample performance

— Training data usually
monotonically
Increasing
performance with
model complexity

Figure 7.1: Behavior of test sample and training sam-

ple error as the model complexity is varied.



Training Error

e Training error -
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— not a good estimat
of test error

— consistently
decreases with
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Using AIC to select the # of basis
functions In a spline regression

Log-likelihood Loss

Train
Test
AN
I:Z:l\:|
- H@ I:l
--h'-\_-'n—_l:l
2 4 a8 16 32 B4 128

Mumber of Basis Functions

Misclassification Error

015 020 025 030 035

0.10

-1 Loss

N

%

/
o
f
i
]

S

Ci}o\ﬁ T oo wn C O —

Fa ]
F

4 & 16 32 64 128

Mumber of Basis Functions

¢



Log-likelihood
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Using AIC to select the # of basis
functions In a spline regression
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Compare fit of fit without log(lead)

* glm(response ~ lead, family = binomial)
 Null Deviance: 101.3 (Null the same)

+ Residual Deviance:56.23  AIC{76.71

* glm(response ~ log(lead), family = binomial)
 Null Deviance: 101.3 (Null the same)

* Residua Deviance: AIC

e Residual deviance and AIC MUCH smaller
with log(lead)




AlIC estimates the expected value of the
relative K-L Distance

AIC = =2 m(f(@)) 12K
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AIC provides a fundamental basis for evaluating the strength of
evidence for models 1n data.



The Kullback-I e1bler
Distance

.....

Solomon Kullback (1907-1994)

The Kullback-Leibler

discrepancy 1s a directed
distance from the “true” model

(/) to candidate models (g;).




A simple way to think about AlC.

e Think about a nested parameter model
and you want to test if a parameter Is
statistically significant.

* The likelihood ratio test: log(ratio of
models with an extra parameter)~¥,?

 Thus, we keep a parameter Is
gchisq(.95,1)/2= 3.84/2 ~2.



The Principle of Parsimony

Variance

Bias-

Number of Parameters i Model



Sakamoto et al. 1986

"True model:"  y=¢e"" —1+eg,

Generated 10 data sets sampling from normal

distribution with mean = 0 and variance = .01

Fit 5 approximating models to the 10 data sets
V= ;BD + ﬁl'T

v=p,+px+ )B:-"TE

y=p,+pfx+ )321_:- T ﬁ3I3
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What creates “noise” 1n models?

Deviations
from “true
model™ are
“noise.”

T ———+-"True Model”
contains all
relevant
information

0.2 o 0.6 0.8 1 1.2




[1lustration of trade off

High variance

High bias

Optimum. 2nd
order with
minimum at
x=.03
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Two few parameters--
fails to respond to
information. Bias 1s
high.

Too many parameters--
responds to “noise.”
Variance 1s high.



The Principle of Parsimony

Variance

=
Hias-

Number of Parameters in Model



Steps 1n Model Selection

Develop candidate models based on biological
knowledge. Lots of thinking here!

Take observations relevant to predictions of
models.

Use data to obtain maximum likelihood estimates
of model parameters.

Evaluate evidence supporting alternative models
using AIC.

Evaluate estimates of parameters relative to direct
measures. Are they what you think they are?



How well does AIC work?

|t tends to keep too many parameters for
complex models. Alternative (Bayesian
Information Criterion) keeps in fewer
parameters.

e There are various corrections that can be
used (these are detalls | will not discuss).

* For variance components and hierarchical
models you need DIC = Deviance
Information Criteria



T

[he tundamental problem of science: How strong

15 the evidence for one view of nature (read
model, hypothesis) compared with an alternative

VIEW !

- Hypothesis testing

* Model selection



** ..the reasons that students have

problems understanding hypothesis

testing 1s that they may be trying to
think.”

W. E. Demming 1975



Statistical Hypothesis Testing

Eelies on falsification.

Ultimately. we learn what 1s true by

establishing what 1s talse through a series of
hypothesis tests,

Most hypothesis tests depend on
interpreting a P value or significance level.
Series of “rejections™ leaves a view of
nature that has greatest support in
observations.



Platt JR (1964) Strong mference - certamn systemanc methods of
scientific thmking may produce nnch more rapid progress than others.
Science 146:347-253

Accunmlating
Enowledgze




Model Selection as an
Alternative to Hypothesis Testing

+ Hypotheses = models
+ Models = approximations of complex truth?

+ Purpose of science: how well do models
approximate truth?

+ Appreciate how different this 1s from “truth
by rejection.™



Relativity ot Evidence in Model

Selection

* We are not asking is a model right or
wrong. We ask. “Does a model have more

support in the data than a competing
model? "

* The strength of evidence (support) for a
model 1s relative,

— Relative to other models---as models improve.
support may change.

— Relative to data at hand---as the data improve,
support mav change.



Model section:
AlIC and all that

measure of fit + complexity penalty



AIC 1s defined as

AIC =-2log L. + 2V,

L, = Maximized log likelihood of model i

V, = Number of free parameters

Choose the model with the smallest AIC (and per-
haps retain all models within 2 of the minumum).



For “small data sets” use corrected AIC
(for number of observation/V < 40)

2V (V +1)

AIC =-2logL+2V + ———
R PRy

L, = Maximized log likelihood of model i

V, = Number of free parameters

Choose the model with the smallest AIC (and per-
haps retain all models within 2 of the munimum).



BIC

e Schwarz (1978) derived the Bayesian
Information criterion as

BIC =-2In(L) + V log(n).

# Parameter # Observations

* As usually used, one computes the BIC for
each model and selects the model with the
smallest criterion value.



DIC — Deviance Information Criterion

In GLMs (and elsewhere) the deviance 1s the difter-
ence 1n twice maximized log likelthood between the
saturated model and the fitted model, or

D(#) = deviance(#) = const(J) — 2L(60:7T)

and 1n GLMs we use D(J ) as the (unscaled) (resid-
ual) deviance.



In practice

o Use stepAlC to pick best models, or group
of models that are consistent with the data
(you have to load the MASS library).



Explanation vs Prediction

This causes a lot of confusion. For explanation,
Occam’s razor applies and we want

an explanation that 1s as sumple as
possible, but no simpler
attrib Emstein

and we do have a concept of a ‘true’ model, or at
least a model that is a good working approximation
to the truth, for

all models are false, but some are useful
G.E.P. Box, 1976

Explanation 1s like domng scientific research.



Prediction

* Prediction is like doing engineering, you
only care that it works.

 If the aim Is prediction, then model choice
should be based upon quality of
predictions.



sUnderstanding

Three types of models

 Theory based models (sometimes
called mechanistic models.

 Empirical Models: simple restrictions
on behaviour, e.g. linear models,
AR(p) processes.

 Modern flexible models: neural
networks, generalized additive
models, “data mining”.




Conclusions

 Have multiple theories

* There are lots of formal ‘figures of adequacy’ for
a model. Some have proved quite useful, but

— Their variability as estimators can be worrying
large.

— Computation, e.g. of ‘effective number of
degrees of freedom’, can be difficult.

— Their implicit measure of performance can be
overly sensitive to certain aspects of the model
which are not relevant to our problem.

 Formal training/validation/test sets, or the cross-
validatory equivalents, are a very general and
safe approach.




* ‘Regression diagnostics’ are often based on
approximations to over-fitting or case
deletion.

« Now we can (and some of us do) fit extended
models with smooth terms or use fitting
algorithms that downweight groups of points.
(I rarely use least squares these days,)

» Use AIC, especially in simpler
problems. Hence the stepAlC function for
S-PLUS/R.
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