
Model Choice and Model 
Validation 

AIC, BIC, DIC, cross validation 
and all that 



Ram’s tip for today: 

Generate models on part of the 
data, and test them on the rest.  



“… the simple idea of splitting a sample in 
two and then developing the hypothesis on 
the basis of one part and the testing it on 
the remained may perhaps be said to be 
one of the most seriously neglected ideas 
in statistics.” G. A. Barnard as quoted in Common Errors in 
Statistics by Good and Hardin. 



You need a theory. 

• Without a working theory, then all 
deviations look the same. You cannot 
target the questionable data. 



You need several theories: 

• Chamberlin ([1890] 1965) advocated the 
concept of “multiple working hypotheses.” 
Here, there isvno null hypothesis; instead, 
there are several well-supported 
hypothesesv(equivalently, “models”) that 
are being entertained. 

• Chamberlin, Thomas. [1890] 1965. “The 
Method of Multiple Working Hypotheses.” 
Science 148:754-9. 
 



Methods of Validation 

• Independent verification (new data from 
same or other population). 

• Splitting sample (one for callibration , and 
the other for verification) 

• Resampling (this is difficult with auto-
correlated data).  



Independent verification 

• Best approach, use completely 
independent data to test model using new 
data, historic data, or data from other 
populations.  



Sample splitting  

• One part to generate hypotheses, one part 
to test 

• Hold back 1/3 or ¼ of data for validataion 
• This is REALLY simple, and thus easy to 

explain, and harder to make subtle errors 
(as it is easy to do in bootstrapping). 

• There is a small loss of efficiency, but it is 
not too bad.  



Resampling 

• Bootstrapping (sampling with replacement) 
• K-fold analysis (divide data into K 

samples) 
• Leave one out analysis 
• Jackknife (a version of leave one out, 

where the analysis is done with all data). 
• Delete-d (see aside k% for testing). 



In any resampling method 
suggests that model is unstable, 

then you reformulate model.  

 



It is impossible for semi-complex 
data sets to generate and test 
hypotheses on the same data. 

• An example, I am interested in what 
factors affect cod recruitment on Georges 
Bank. 

• I have a 30 year time series of cod 
recruitment data. 

• I have access to 10 environmental 
variables with data on each month.  

• I consider 3 possible year lags. 
• This is 10*12*3 possible correlations with 

single variables. 



• We have approximately 20*12*3 squared 
2 factor combinations 
 



But it is much worse that that 

• These time series are generally auto-
correlated, i.e. there are fewer degrees of 
freedom than you think.  
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Cod versus shrimp catches in 
all NAFO areas combined 
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Cod versus lobster catches 
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Cod versus crab catches 



Major shrimp stocks in the North 
Atlantic 
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Cod and shrimp biomass in the North Atlantic:  
time series 
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Cod and shrimp biomass in the North Atlantic: 
correlations 
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Step 1: Dealing with 
autocorrelation and 
measurement error 

  

 

  

 

Simple analysis Corrected analysis 

Source: Hedges & Olkin 1985, Pyper & Peterman 1998 

Region  r N P r* N* P*
Labrador -0.746 23 0.000 -0.827 4.8 0.054
N. Newfoundland -0.911 13 0.000 -0.976 3.3 0.012
Flemish Cap -0.526 12 0.073 -0.607 6.3 0.161
N.Gulf of St. Lawrence -0.708 19 0.000 -0.827 3.4 0.165
Eastern Scotian Shelf -0.856 21 0.000 -0.982 3.5 0.004
Gulf of Maine -0.131 31 0.485 -0.147 9.3 0.701
Iceland -0.459 33 0.006 -0.63 8.2 0.075
Barents Sea -0.412 18 0.087 -0.635 11.7 0.023
Skagerrak 0.788 11 0.002 0.808 5.0 0.061



Step 2: Random-effects meta-
analysis 
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Step 3: Testing environmental 
forcing 
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Step 4: Examining spatial 
correlation 

• Cod recruitment is correlated on scales <500 
km 

• Stocks are not entirely independent 
• Sensitivity analysis shows that this does not 

change results 
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Step 5: Testing for latitudinal 
gradients 

Cod – shrimp 
Cod – 

temperature 
Shrimp – 

temperature 
P=0.044 P=0.726 P=0.219 



Bias, Variance, and Model 
Complexity 

• Bias-Variance trade-
off again 

• Generalization: test 
sample vs. training 
sample performance 
– Training data usually 

monotonically 
increasing 
performance with 
model complexity 



Training Error 

• Training error - 
Overfitting 
– not a good estimate 

of test error 
– consistently 

decreases with 
model complexity 

– drops to zero with 
high enough 
complexity 

 



Using AIC to select the # of basis 
functions in a spline regression 
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Using AIC to select the # of basis 
functions in a spline regression 
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AIC is 
right 

AIC is right 



• glm(response ~ lead, family = binomial) 
• Null Deviance:      101.3 (Null the same) 
• Residual Deviance: 56.23        AIC: 76.71  

 
• glm(response ~ log(lead), family = binomial)  
• Null Deviance:      101.3 (Null the same) 
• Residual Deviance: 2.784        AIC: 23.26  
• Residual deviance and AIC MUCH smaller 

with log(lead) 

Compare fit of fit without log(lead) 







A simple way to think about AIC. 

• Think about a nested parameter model 
and you want to test if a parameter is 
statistically significant.  

• The likelihood ratio test: log(ratio of 
models with an extra parameter)~χ1

2  
• Thus, we keep a parameter is 

qchisq(.95,1)/2= 3.84/2 ~2.  
 

















How well does AIC work? 

• It tends to keep too many parameters for 
complex models. Alternative (Bayesian 
Information Criterion) keeps in fewer 
parameters.  

• There are various corrections that can be 
used (these are details I will not discuss). 

• For variance components and hierarchical 
models you need DIC = Deviance 
Information Criteria 















Model section:  
AIC and all that 

 



Li = Maximized log likelihood of model i 
 
Vi = Number of free parameters 



Li = Maximized log likelihood of model i 
 
Vi = Number of free parameters 

For “small data sets” use corrected AIC  
(for number of observation/V < 40)   



BIC  

• Schwarz (1978) derived the Bayesian 
information criterion as 

      BIC = −2 ln(L) + V log(n). 
 
 
• As usually used, one computes the BIC for 

each model and selects the model with the 
smallest criterion value. 
 

# Parameter                # Observations 



DIC – Deviance Information Criterion 

 



In practice 

• Use stepAIC to pick best models, or group 
of models that are consistent with the data 
(you have to load the MASS library).  
 





Prediction 

• Prediction is like doing engineering, you 
only care that it works.  

• If the aim is prediction, then model choice 
should be based upon quality of 
predictions.  



Three types of models 

• Theory based models (sometimes 
called mechanistic models. 

• Empirical Models: simple restrictions 
on behaviour, e.g. linear models, 
AR(p) processes. 

• Modern flexible models: neural 
networks, generalized additive 
models, “data mining”.  
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Conclusions 
• Have multiple theories 
• There are lots of formal ‘figures of adequacy’ for 

a model. Some have proved quite useful, but 
     – Their variability as estimators can be worrying 

large. 
     – Computation, e.g. of ‘effective number of 

degrees of freedom’, can be difficult.   
     – Their implicit measure of performance can be 

overly sensitive to certain aspects of the model 
which are not relevant to our problem. 

• Formal training/validation/test sets, or the cross-
validatory equivalents, are a very general and 
safe approach. 



• ‘Regression diagnostics’ are often based on 
approximations to over-fitting or case 
deletion. 

• Now we can (and some of us do) fit extended 
models with smooth terms or use fitting 
algorithms that downweight groups of points. 
(I rarely use least squares these days,) 

• Use AIC, especially in simpler 
problems. Hence the stepAIC function for 
S-PLUS/R. 
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