
Programming Style

• You will be expected to write a structured
program that is well documented

Clarity in Programming

• write code in logical order, even when
order of operations does not matter

• name things informatively
• Indent
• Be consistent about naming conventions

for everything, within programs, names of
programs, names of directories, etc.

Why Rules?

• to minimize the occurrence of
programming errors

• to help the programmer understand his/her
own programs

• to help other programmers understand
them

Rule: Don't break a rule unless
there is a good reason.

Rule: Always document what you
do, as you do it.

Rule: Documentation should be
concise but comprehensive.

• Obvious or self-explanatory steps do not need

explanation. For example, the comment at the
end of the following line of code is useless:

• x <- x + 1 # Increment x by 1
• Short-cuts, tricks, and complicated manoeuvers

(must always be carefully documented) (and in
many cases should be rewritten anyway)

Rule: Directories should contain
README files.

• The README file should briefly describe
the purpose of the directory, information of
relevance to the entire directory, etc.

• It doesn't need to explain the contents of
every file in a directory.

• Usually putting documentation in the
individual files is a better strategy.

• Sometimes, however, it is useful to give an
overview of what various files do.

Rule: Always put comments in
programs

• Perhaps the most important comments are
the ones at the top of a program or
function that give their purpose, date, and
author.

Documentation

• Program should be self docmentating as
far as possible.

• State purpose, author, and date at the
begininng

Document as you go

e.g.
whale.preg.glm<-function(data=whaledat){
 # Whale Pregancy GLMI
 # Colien Minto, Jan 28, 2006
 glm(calves ~ chlA + temp, family=poisson()))
}

Within general code

Rule: Always put in comments at
the beginning of a program or

function to explain what it does, and
how that relates to its name.

• The second part of this rule is crucial. A
program's name should reflect its purpose.
If it proves difficult to explain the connection
between a program's name and its purpose
then the name is inadequate.

Rule: All the arguments and results
for each subroutine must be

described.

• Input and output of a subroutine should

always be documented.

Rule: Don't embed data in
programs.

• Generally it is best to put data in data files

rather than embedding data in programs.
This makes it easier to modify the data,
allows the data to be used by other
programs, and makes proper
documentation of the data more likely.

Rule: Never use magic numbers.
• Magic numbers are values embedded in programs rather

than obtained from data files or passed-in as
parameters.

• The use of magic numbers is a bad practice because it
makes programs hard to understand (e.g. ``Why is 37
added on here?'') and hard to modify (e.g., ``How do I
change the number of years?'').

• In S-PLUS/R, default arguments can be used to avoid
magic numbers altogether.

• In other languages, careful declaration of parameters
and constants can solve the problem.

• Often, the use of magic numbers is a reflection of other
shortcomings -- e.g. assuming that there will be a
certain number of values in a data file, rather than
calculating the number of values automatically (which is
what should always be done).

Rule: Isolate calculation routines
from figure-making routines.

• Some programs calculate values. Others produce nice
figures.

• Try not to mix these two purposes in a single program.
• Often considerable effort is devoted to making figures

``pretty''.
• This has nothing to do with the results being displayed,

and the results certainly don't need to be recalculated!
• In S-PLUS/R, permanent objects can be used to store

the results of a calculation and then default arguments
can be used to import these results into programs that
produce figures.

Rule: Produce final drafts of figures
the first time.

• High-quality figures are easily produced in R.
• It is important that data points and axis numbers

be large enough for publication.
• In general, axis labels should have the first letter

of each word capitalized, with units in
parentheses, e.g. Spawner Biomass (thousand
tonnes).

• However, some journals require you to use the
sentence style (only the first letter of the first
word is capitalized).

Rule: Indent for clarity

Always indent loops, and subloops.
Use 4 spaces.

Rule: Indent for clarity

 TwoSamTTest <- function(y1, y2) {
 # Two Sample T Test,
 # Coilin Minto Jan 20, 2006
 n1 <- length(y1); n2 <- length(y2) # obtain n values
 yb1 <- mean(y1); yb2 <- mean(y2) # obtain means
 s1 <- var(y1); s2 <- var(y2) # obtain variance
 s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2) # standard error
 tst <- (yb1 - yb2)/sqrt(s*(1/n1 + 1/n2)) #t statistic
 tst
}

Indent

model {
 for (j in 1:J){
 y[j] ~ dnorm (theta[j], tau.y[j])
 theta[j] ~ dnorm (mu, tau.theta)
 tau.y[j] <- pow(sigma.y[j], -2)
 }
 mu ~ dnorm (0.0, 1.0E-6)
 tau.theta <- pow(sigma.theta, -2)
 sigma.theta ~ dunif (0, 1000)
}

plotyield <- function(n=50, amax=20,aknife=4,p=1,psplot=T)
{
plots a equilibrium spawner Biomass and yield for for scallops
RAM, Aug 2, 1998

if(psplot){

 ps()
 par(oma = c(5, 3, 3, 3))
 par(mar = c(4, 4, 5, 2))
 par(las = 1)
}

f<-seq(0,0.9,length=n)
y<-rep(0,n)
j <- 0
for (e2 in f) {
 j <- j + 1
 y[j] <- yield(fmax=e2,iratio=0.0,aknife=aknife,amax=amax,p=p)
 }

plot(f,y,type="l",lty=1,xlab="",ylab="Yield (grams per recruit)")

if(psplot){

Rule: Use editors that “speak” the
programming language.

• Many editors “understand” a programming
language, and will help you find errors.

• Examples:
• Winedit
• Emacs speaks statistics
• Gvim

	Programming Style
	Clarity in Programming
	Why Rules?
	Rule: Don't break a rule unless there is a good reason.
	Rule: Always document what you do, as you do it.
	Rule: Documentation should be concise but comprehensive.�
	Rule: Directories should contain README files.
	Rule: Always put comments in programs
	Documentation
	Document as you go
	Rule: Always put in comments at the beginning of a program or function to explain what it does, and how that relates to its name.
	Rule: All the arguments and results for each subroutine must be described.
	Rule: Don't embed data in programs.
	Rule: Never use magic numbers.
	Rule: Isolate calculation routines from figure-making routines.
	Rule: Produce final drafts of figures the first time.
	Rule: Indent for clarity
	Rule: Indent for clarity
	Indent
	Slide Number 20
	Rule: Use editors that “speak” the programming language.

